Angiogenesis is a process associated with the migration and proliferation of endothelial cells (EC) to form new blood vessels. It is involved in various physiological and pathophysiological conditions and is controlled by a wide range of proangiogenic and antiangiogenic molecules. The plasminogen activator–plasmin system plays a major role in the extracellular matrix remodeling process necessary for angiogenesis. Urokinase/tissue-type plasminogen activators (uPA/tPA) convert plasminogen into the active enzyme plasmin, which in turn activates matrix metalloproteinases and degrades the extracellular matrix releasing growth factors and proangiogenic molecules such as the vascular endothelial growth factor (VEGF-A). The plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of uPA and tPA, thereby an inhibitor of pericellular proteolysis and intravascular fibrinolysis, respectively. Paradoxically, PAI-1, which is expressed by EC during angiogenesis, is elevated in several cancers and is found to promote angiogenesis by regulating plasmin-mediated proteolysis and by promoting cellular migration through vitronectin. The urokinase-type plasminogen activator receptor (uPAR) also induces EC cellular migration during angiogenesis via interacting with signaling partners. Understanding the molecular functions of the plasminogen activator plasmin system and targeting angiogenesis via blocking serine proteases or their interactions with other molecules is one of the major therapeutic strategies scientists have been attracted to in controlling tumor growth and other pathological conditions characterized by neovascularization.
The 14-kilodalton human growth hormone (14 kDa hGH) N-terminal fragment derived from the proteolytic cleavage of its full-length counterpart has been shown to sustain antiangiogenic potentials. This study investigated the antitumoral and antimetastatic effects of 14 kDa hGH on B16-F10 murine melanoma cells. B16-F10 murine melanoma cells transfected with 14 kDa hGH expression vectors showed a significant reduction in cellular proliferation and migration associated with an increase in cell apoptosis in vitro. In vivo, 14 kDa hGH mitigated tumor growth and metastasis of B16-F10 cells and was associated with a significant reduction in tumor angiogenesis. Similarly, 14 kDa hGH expression reduced human brain microvascular endothelial (HBME) cell proliferation, migration, and tube formation abilities and triggered apoptosis in vitro. The antiangiogenic effects of 14 kDa hGH on HBME cells were abolished when we stably downregulated plasminogen activator inhibitor-1 (PAI-1) expression in vitro. In this study, we showed the potential anticancer role of 14 kDa hGH, its ability to inhibit primary tumor growth and metastasis establishment, and the possible involvement of PAI-1 in promoting its antiangiogenic effects. Therefore, these results suggest that the 14 kDa hGH fragment can be used as a therapeutic molecule to inhibit angiogenesis and cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.