Silver diamine fluoride (SDF) is commonly used to arrest caries lesions, especially in early childhood caries. Recently, it was suggested that SDF can be combined with potassium iodide (KI) to minimize the discoloration of demineralized dentine associated with SDF application. However, the antibacterial efficacy of SDF alone or combined with KI on
in-situ
biofilm is unknown. Hence, we compared the anti-plaque biofilm efficacy of two different commercially available SDF solutions, with or without KI, using an
in-situ
biofilm, analysed using viability real-time PCR with propidium monoazide (PMA). Appliance-borne
in-situ
biofilm samples (n = 90) were grown for a period of 6 h in five healthy subjects who repeated the experiment on three separate occasions, using a validated, novel, intraoral device. The relative anti-biofilm efficacy of two SDF formulations; 38.0% Topamine (SDF
T
) and 31.3%, Riva Star (SDF
R
), KI alone, and KI in combination with SDF
R
(SDF
R+KI
) was compared. The experiments were performed by applying an optimized volume of the agents onto the biofilm for 1min, mimicking the standard clinical procedure. Afterwards the viability of the residual biofilm bacteria was quantified using viability real-time PCR with PMA, then the percentage of viable from total bacteria was calculated. Both SDF formulations (SDF
T
and SDF
R
) exhibited potent antibacterial activities against the
in-situ
biofilm; however, there was non-significant difference in their efficacy. KI alone did not demonstrate any antibacterial effect, and there was non-significant difference in the antibacterial efficacy of SDF alone compared to SDF with KI, (SDF
T
v SDF
R/KI
). Thus, we conclude that the antibacterial efficacy of SDF against plaque biofilms is not modulated by KI supplements. Viability real-time PCR with PMA was successfully used to analyze the viability of naturally grown oral biofilm; thus, the same method can be used to test the antimicrobial effect of other agents on oral biofilms in future research.
Current immunological issues in bone grafting regarding the transfer of xenogeneic donor bone cells into the recipient are challenging the industry to produce safer acellular natural matrices for bone regeneration. The aim of this study was to investigate the efficacy of a novel decellularization technique for producing bovine cancellous bone scaffold and compare its physicochemical, mechanical, and biological characteristics with demineralized cancellous bone scaffold in an in-vitro study. Cancellous bone blocks were harvested from a bovine femoral head (18–24 months old) subjected to physical cleansing and chemical defatting, and further processed in two ways. Group I was subjected to demineralization, while Group II underwent decellularization through physical, chemical, and enzymatic treatments. Both were then freeze-dried, and gamma radiated, finally producing a demineralized bovine cancellous bone (DMB) scaffold and decellularized bovine cancellous bone (DCC) scaffold. Both DMB and DCC scaffolds were subjected to histological evaluation, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), fourier-transform infrared spectroscopy (FTIR), quantification of lipid, collagen, and residual nucleic acid content, and mechanical testing. The osteogenic potential was investigated through the recellularization of scaffolds with human osteoblast cell seeding and examined for cell attachment, proliferation, and mineralization by Alizarin staining and gene expression. DCC produced a complete acellular extracellular matrix (ECM) with the absence of nucleic acid content, wider pores with extensive interconnectivity and partially retaining collagen fibrils. DCC demonstrated a higher cell proliferation rate, upregulation of osteogenic differentiation markers, and substantial mineralized nodules production. Our findings suggest that the decellularization technique produced an acellular DCC scaffold with minimal damage to ECM and possesses osteogenic potential through the mechanisms of osteoconduction, osteoinduction, and osteogenesis in-vitro.
The use of alternative tobacco products, particularly medwakh, has expanded among youth in the Middle East and around the world. The present study is conducted to investigate the biochemical and pathophysiological changes caused by medwakh smoking, and to examine the salivary metabolomics profile of medwakh smokers. Saliva samples were collected from 30 non-smokers and 30 medwakh smokers and subjected to metabolomic analysis by UHPLC-ESI-QTOF-MS. The CRP and Glutathione Peroxidase 1 activity levels in the study samples were quantified by ELISA and the total antioxidant capacity (TAC) by TAC assay kits. Statistical measurements and thorough validation of data obtained from untargeted metabolomics identified 37 uniquely and differentially abundant metabolites in saliva of medwakh smokers. The levels of phthalate, L-sorbose, cytosine, uridine, alpha-hydroxy hippurate, and L-nicotine were noticeably high in medwakh smokers. Likewise, 20 metabolic pathways were differentially altered in medwakh smokers. This study identified a distinctive saliva metabolomics profile in medwakh smokers associated with altered redox homeostasis, metabolic pathways, antioxidant system, and CRP levels. The impact of the altered metabolites in medwakh smokers and their diagnostic utility require further research in large cohorts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.