Background:The aim of this study was to evaluate the stability of immediate implant placement for alveolar bone augmentation and preservation with bovine bone graft following atraumatic tooth extraction.Materials and Methods:This was a prospective interventional study with convenient sampling (n = 10). Thirty patients aged between 18 and 40 years, who needed noncomplicated tooth extraction of mandibular premolar tooth, were sequentially divided equally into three groups. In Group I, simple extraction was done and the empty extraction socket left to heal conventionally. In Group II, extraction sockets were filled with lyophilized bovine granules only. In Group III, immediate implants were placed into extraction sockets, and the buccal gap was also filled with bovine granules. All groups were subjected to cone beam computed tomography scan for radiological evaluation. Assessment of biomechanical stability (radiofrequency analysis [RFA] was performed at 9 months postoperative for Group III to assess the degree of secondary stability of the implants using Osstell. Repeated measure analysis of variance (ANOVA) test was applied when comparing within each group at three different time intervals, whereas one-way ANOVA was applied followed by post hoc-tukey test when comparing between groups. P < 0.05 was considered statistically significant.Results:Radiological assessment reveals a significant difference of bone resorption in alveolar dimension within Group I; 1.49 mm (P = 0.002), and 0.82 mm (P = 0.005), respectively, between day 0 and 3 months. Comparison between Group I and III showed a highly significant difference of bone resorption in ridge width at 3 months 2.56 mm (P = 0.001) and at 9 months interval 3.2 mm (P < 0.001). High RFA values demonstrating an excellent biomechanical stability were observed in Group III at 9 months postoperatively.Conclusion:The insertion of immediate implants in extraction sockets with bovine bone augmentation of the buccal gap was able to preserve a greater amount of alveolar ridge volume.
Background. A dry socket also referred to as alveolar osteitis (AO) is a common postoperative complication following tooth extraction, due to the disruption of the clot within the wound. This study aimed to evaluate the efficacy of concentrated growth factor (CGF) in the healing of alveolar osteitis following tooth extraction. Methods. The study was conducted at University Dental Hospital Sharjah, UAE. Patients undergoing tooth extraction at the oral surgery clinic were advised to return immediately if they suffer from pain. Over the following first week after tooth extraction, patients who reported pain symptoms were recalled and all dry sockets were identified. The patients were divided into two groups. Group I patients received conventional treatment with socket curettage and saline irrigation only, while in group II CGF was inserted into the socket. Both groups were observed for pain score and quantification of granulation tissue formation. Results. A total of 40 dry socket patients, aged between 18 and 60 years, from a total of 1,250 patients, were included in the study. 30 patients were given conventional treatment while another 10 patients were given CGF. Patients who received CGF had a pain score of 7–10 at presentation, and the pain score dropped to 0–3 on day 4 and further improved to 0-1 on day 7 (p=0.001). Granulation tissue formation appeared in the conventional group I on day 7 while the CGF group II showed earlier granulation tissue formation by day 4 (p=0.001). The posttreatment pain score is inversely proportional to the amount and rate of granulation tissue formation in the socket. Conclusion. The study suggests that delivery of CGF into a dry socket helps relieve pain and expedite the wound healing process as shown by a statistically much lower pain score and earlier and more rapid formation of granulation tissue when compared to the conventional alveolar osteitis therapy.
The use of lyophilized demineralized bovine bone granules in socket preservation to fill in the extraction socket seems essential in preserving the alveolar bone dimension as it showed excellent soft and hard tissue healing. This study concludes that the alveolar bone socket exhibited a dynamic process of resorption from the first day of tooth extraction. Evidence shows the possibility of using bovine bone granules routinely in socket volume preservation techniques following tooth extraction.
Current immunological issues in bone grafting regarding the transfer of xenogeneic donor bone cells into the recipient are challenging the industry to produce safer acellular natural matrices for bone regeneration. The aim of this study was to investigate the efficacy of a novel decellularization technique for producing bovine cancellous bone scaffold and compare its physicochemical, mechanical, and biological characteristics with demineralized cancellous bone scaffold in an in-vitro study. Cancellous bone blocks were harvested from a bovine femoral head (18–24 months old) subjected to physical cleansing and chemical defatting, and further processed in two ways. Group I was subjected to demineralization, while Group II underwent decellularization through physical, chemical, and enzymatic treatments. Both were then freeze-dried, and gamma radiated, finally producing a demineralized bovine cancellous bone (DMB) scaffold and decellularized bovine cancellous bone (DCC) scaffold. Both DMB and DCC scaffolds were subjected to histological evaluation, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), fourier-transform infrared spectroscopy (FTIR), quantification of lipid, collagen, and residual nucleic acid content, and mechanical testing. The osteogenic potential was investigated through the recellularization of scaffolds with human osteoblast cell seeding and examined for cell attachment, proliferation, and mineralization by Alizarin staining and gene expression. DCC produced a complete acellular extracellular matrix (ECM) with the absence of nucleic acid content, wider pores with extensive interconnectivity and partially retaining collagen fibrils. DCC demonstrated a higher cell proliferation rate, upregulation of osteogenic differentiation markers, and substantial mineralized nodules production. Our findings suggest that the decellularization technique produced an acellular DCC scaffold with minimal damage to ECM and possesses osteogenic potential through the mechanisms of osteoconduction, osteoinduction, and osteogenesis in-vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.