Background: Shortage of water is a major problem facing Egypt; thus, it becomes necessary to use non-traditional sources of water such as saline water in irrigation. Overcoming the adverse effects of saline water and enhancing plant tolerance to salinity stress is the main challenge for increasing plant growth and productivity. Using a natural compound such as cysteine amino acid has an important effect in alleviating the adverse effect of salinity stress on different plant crops. Materials and methods: Two pot experiments were carried out during two successive summer seasons to study the beneficial role of cysteine (0, 20, and 40 mg/l) in enhancing growth, some metabolic process, and seed yield quality and quantity of soybean plant grown under salinity stress (0, 3000, and 6000 mg/l). Results: Salinity stress (3000 and 6000 mg/l) caused decreases in soybean growth criteria (plant height, number of branches and leaves/plant, dry weight of leaves and stem/plant), photosynthetic pigments and some element contents (nitrogen (N), phosphorus (P), and potassium (K)), and seed yield and yield components (number of pods/ plant, weight of pods/plant and number of seeds/plant) as well as oil%. Meanwhile, proline, H 2 O 2 and MDA contents, and superoxide dismutase activity were gradually increased by increasing salinity level. On the other hand, cysteine treatments improved growth and yield of soybean plant either irrigated with tap water or saline water. Cysteine treatments could alleviate the adverse effect of salinity stress on growth and yield of soybean plant through increasing photosynthetic pigments; proline content; N, P, and K contents; superoxide dismutase and catalase activities; and oil% accompanied by decreases in H 2 O 2 and MDA contents as compared with their corresponding controls. In addition, cysteine treatments and/or salinity stress exhibited differences in protein pattern from 112 to 19 kD molecular weight. The appearance of new protein bands reflected the expression of cysteine treatments and salinity stress. Conclusion: Cysteine treatments had a beneficial role in alleviating the adverse effect of salinity stress on soybean plant. Forty milligrams per liter of cysteine was the most effective treatment in enhancing salinity tolerance of soybean plant.
Background: This study was conducted to evaluate the genetic diversity of five peanut cultivars grown under field conditions. A field experiment was conducted using five peanut cultivars (Giza-5, Giza-6, Ismailia-1, Gregory, and R92) in a randomized complete block design with five replications during two following seasons to estimate the performance of five peanut cultivars for vegetative growth, yield, and yield component traits as well as seed quality traits. Twenty RAPD primers were used to identify a unique fingerprint for each of five cultivars. Results: Giza-6 cultivar surpassed all the tested peanut cultivars in the most vegetative growth traits and yield and its components traits, while the lowest values were observed in Giza-5 cultivar. The dendrogram constructed from RAPD analysis showed that Gregory and Giza-5 were the most distant among five peanut cultivars. Conclusions: RAPD markers are useful in the detection of genetic diversity of peanut. The availability of genetic diversity is important for the genetic improvement of peanut.
Background: The medicinal plants have been used as alternative treatments for many diseases in many countries. Thus, the possibility of the alteration of some naturally relatively cheap sources into highly valuable products for pharmaceutical and biological importance via tissue culture is investigated in this study. Special attention is needed to estimate the molecular genetic variation between the studied plant and the callus. Results: Ginger (Zingiber officinale Roscoe) rhizome was affected by various concentrations of cytokinin and auxin for the induction of callus. The highest percentage of callus induction and maximal callus fresh weight was achieved when Murashige and Skoog (MS) medium was supplemented with 2 mg/l 2, 4-D + 1mg/l BA. The genetic variations accompanied with in vitro conditions of callus induction was evaluated by four primers of inter-simple sequence repeat (ISSR) that amplified 36 bands. The highest readings for clotting times were found by using the sulfated neutral extract of ginger rhizome at a concentration of 400 μg/ml, and the extract of sulfated alkaline plant callus had an anticoagulation activity at (200 μg/ml) comparable to that of a standard preparation of heparin sodium.Conclusion: These results showed that ginger (Zingiber officinale Roscoe) rhizome was affected by various concentrations of cytokinin and auxin for induction of callus especially when MS was supplemented with 2 mg/l 2, 4-D + 1 mg/l BA. Also, the results of ISSR markers confirmed the occurrence of genetic variations during callus induction process. The results indicated that the sulfated alkaline of ginger rhizome and sulfated aqueous extracts of ginger rhizome and callus exhibited anticoagulant activity. So, it was clear that the addition of sulfate group into the investigated extracts enhances the anticoagulation activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.