A well adherent thin films of Aluminum doped zinc sulphide (Al:ZnS) has been deposited on silica glass substrates using acidic chemical bath deposition (CBD) containing zinc acetate, Aluminum Chloride, and thioacetamide. EDTA was used as complexing agent to control the free ion concentration of the thin films. Aluminum concentrations were doped by 2%, 4%, and 6% while keeping other deposition parameters constant as deposited Al:ZnS thin films. The samples were characterized by BrukerD8 diffractometer with cuKα (λ=1.5406A˚) radiation working at 40 mA and 40 kV, JOEL-2300 Analysis Station Scanning electron microscope (SEM), and Perkin Elmer Lambda 950 UV-vis/NIR spectrophotometer. The structural characterization of the samples show that no intense peaks were observed indicating the amorphous nature of the films. The surface morphology studies of as deposited Al:ZnS thin films shown the films were uniform, dense, and composed of spherical shaped grains. EDAX shows the elemental composition of Zn, S, and Al. The ratios of Zn/S in Stoichiometric even though the concentration of Aluminum is increased. Optical absorbance of the films decreased with increase Aluminum concentration. The large band gap makes them good materials for application as a window layer for solar cells.
The dynamics of heavy-ion fusion reaction involved in the interaction of 12C,14N and 16O projectiles with,59Co, 51V,128Te and165Ho targets at≈3-8MeV/nucleon specific energies was studied. This study focus on the correlation between entrance channel properties and incomplete fusion reaction. The experimentally measured excitation functions of various reaction products populated by complete and/or incomplete fusions of 12C+59Co, 128Te,14N+128Teand 16O+ 51V, 165Hoprojectile-target systems available in the literature. Were compared and analyzed with the predicted excitation functions, using the statistical model code PACE4. For representative non-α-emitting channels, the experimentally measured excitation functions were, in general, found to be in good agreement with the theoretical predictions. However, for α-emitting channels in the present systems, the measured excitation functions were higher than the predictions of the theoretical model code, which may be credited to incomplete fusion reactions at these energies. An attempt was made to approximate the incomplete fusion fraction that explains the relative importance of incomplete fusion processes. The incomplete fusion fraction was found to be sensitive to the projectile energy and mass-asymmetry of the entrance channel
The dynamics of heavy-ion fusion reaction elaborate in the interaction of projectiles with and 51 V targets at ≈3-8MeV/nucleon specific energies were studied. This study were emphases on the relationship between entrance channel belongings and incomplete fusion reaction. The experimentally measured excitation functions of various reaction products duplicated by complete or incomplete fusions of + , projectile-target systems had been compared and analyzed within the predicted excitation functions, using the statistical model code PACE4. For α-emitting channels in the present systems, the measured excitation functions had been highest than the predictions of the theoretical model code, which may focuses at these energies. However for non-alpha emitting channels in this system the measured excitation function had been nice agreement with the theoretical values. An endeavor were made to nearly the incomplete fusion fraction that designates importance of incomplete fusion process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.