Cobalt sulfide thin films were synthesized from acidic chemical baths by varying the deposition time. The powder X-ray diffraction studies indicated that there are hexagonal CoS, face-centered cubic Co3S4, and cubic Co9S8 phases of cobalt sulfide. The crystallite size of the hexagonal CoS phase decreased from 52.8 nm to 22.5 nm and that of the cubic Co9S8 phase increased from 11 nm to 60 nm as the deposition time increased from 2 hrs to 3.5 hrs. The scanning electron microscopic images revealed crack and pinhole free thin films with uniform and smooth background and few large polygonal grains on the surface. The band gap of the cobalt sulfide thin films decreased from 1.75 eV to 1.3 eV as the deposition time increased from 2 hrs to 3.5 hrs. The photoluminescence (PL) spectra of the films confirmed the emission of ultraviolet, violet, and blue lights. The intense PL emission of violet light at 384 nm had red shifted with increasing deposition time that could be resulted from the increase in the average crystallite size. The FTIR spectra of the films indicated the presence of OH, C-O-H, C-O, double sulfide, and Co-S groups. As the deposition time increased, the electrical resistivity of the cobalt sulfide thin films decreased due to the increase in both the crystallite size and the films’ thickness.
A well adherent thin films of Aluminum doped zinc sulphide (Al:ZnS) has been deposited on silica glass substrates using acidic chemical bath deposition (CBD) containing zinc acetate, Aluminum Chloride, and thioacetamide. EDTA was used as complexing agent to control the free ion concentration of the thin films. Aluminum concentrations were doped by 2%, 4%, and 6% while keeping other deposition parameters constant as deposited Al:ZnS thin films. The samples were characterized by BrukerD8 diffractometer with cuKα (λ=1.5406A˚) radiation working at 40 mA and 40 kV, JOEL-2300 Analysis Station Scanning electron microscope (SEM), and Perkin Elmer Lambda 950 UV-vis/NIR spectrophotometer. The structural characterization of the samples show that no intense peaks were observed indicating the amorphous nature of the films. The surface morphology studies of as deposited Al:ZnS thin films shown the films were uniform, dense, and composed of spherical shaped grains. EDAX shows the elemental composition of Zn, S, and Al. The ratios of Zn/S in Stoichiometric even though the concentration of Aluminum is increased. Optical absorbance of the films decreased with increase Aluminum concentration. The large band gap makes them good materials for application as a window layer for solar cells.
ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. The single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. The XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. The ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. The CdS/ZnS heterojunction thin film is nearly amorphous. The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. The CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of
10
15
1/s. The optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. The surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. The EDX result confirmed nearly 1 : 1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.