Social science studies have acknowledged that the social influence of individuals is not identical. Social networks structure and shared text can reveal immense information about users, their interests, and topic-based influence. Although some studies have considered measuring user influence, less has been on measuring and estimating topic-based user influence. In this paper, we propose an approach that incorporates network structure, usergenerated content for topic-based influence measurement, and user's interactions in the network. We perform experimental analysis on Twitter data and show that our proposed approach can effectively measure topic-based user influence.
The rapid growth of social networks and their strong presence in our lives have attracted many researchers in social networks analysis. Users of social networks spread their opinions, get involved in discussions, and consequently, influence each other. However, the level of influence of different users is not the same. It varies not only among users, but also for one user across different topics. The structure of social networks and user-generated content can reveal immense information about users and their topic-based influence. Although many studies have considered measuring global user influence, measuring and estimating topic-based user influence has been under-explored. In this paper, we propose a collaborative topic-based social influence model that incorporates both network structure and user-generated content for topic-based influence measurement and prediction. We predict topic-based user influence on unobserved topics, based on observed topic-based user influence through their generated contents and activities in social networks. We perform experimental analysis on Twitter data, and show that our model outperforms state-of-the-art approaches on recall, accuracy, precision, and F-score for predicting topic-based user influence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.