Compared with conventional chemotherapy, encapsulation of drugs in nanoparticles can improve efficacy and reduce toxicity. However, delivery of nanoparticles is often insufficient and heterogeneous because of various biological barriers and uneven tumor perfusion. We investigated a unique multifunctional drug delivery system consisting of microbubbles stabilized by polymeric nanoparticles (NPMBs), enabling ultrasound-mediated drug delivery. The aim was to examine mechanisms of ultrasound-mediated delivery and to determine if increased tumor uptake had a therapeutic benefit. Cellular uptake and toxicity, circulation and biodistribution were characterized. After intravenous injection of NPMBs into mice, tumors were treated with ultrasound of various pressures and pulse lengths, and distribution of nanoparticles was imaged on tumor sections. No effects of low pressures were observed, whereas complete bubble destruction at higher pressures improved tumor uptake 2.3 times, without tissue damage. An enhanced therapeutic effect was illustrated in a promising proof-of-concept study, in which all tumors exhibited regression into complete remission.
Purpose The aim of this study was to explore the β-emitting lutetium-177 labelled anti-CD37 antibody NNV003 ( 177 Lu-NNV003, Humalutin®) for the treatment of non-Hodgkin’s lymphoma in in vitro studies and in animal models. Methods Cytotoxicity of 177 Lu-NNV003 was measured in REC-1 (mantle cell lymphoma) and DOHH-2 (diffuse large B cell lymphoma) cell lines. Biodistribution was studied in mice bearing subcutaneous DOHH-2 or MEC-2 (chronic lymphocytic leukaemia) xenografts. The therapeutic effect of a single injection of 177 Lu-NNV003 was measured in mice intravenously or subcutaneously injected with REC-1 cells. Haematological and histopathological assessments were used to evaluate the toxic effect of 177 Lu-NNV003. The immunotherapeutic effect of NNV003 was assessed by measuring binding to Fcγ receptors, activation of ADCC and ADCP. NNV003’s immunogenicity potential was assessed using in silico immunogenicity prediction tools. Results 177 Lu-NNV003 showed an activity dependent antiproliferative effect in all cell lines. Maximum tumour uptake in vivo was 45% of injected activity/g in MEC-2 tumours and 15% injected activity/g in DOHH-2 tumours. In mice injected intravenously with REC-1 cells, 177 Lu-NNV003 (50–100 MBq/kg) improved survival compared to control groups ( p < 0.02). In mice with subcutaneous REC-1 xenografts, 500 MBq/kg 177 Lu-NNV003 extended survival compared to the control treatments ( p < 0.005). Transient haematological toxicity was observed in all mice treated with radioactivity. NNV003 induced ADCC and ADCP and was predicted to have a lower immunogenicity potential than its murine counterpart. Conclusion 177 Lu-NNV003 had a significant anti-tumour effect and a favourable toxicity profile. These results warrant further clinical testing in patients with CD37-expressing B cell malignancies. Electronic supplementary material The online version of this article (10.1007/s00259-019-04417-1) contains supplementary material, which is available to authorized users.
Relapse of chronic lymphocytic leukaemia and non-Hodgkin's lymphoma after standard of care treatment is common and new therapies are needed. The targeted alpha therapy with 212 Pb-NNV003 presented in this study combines cytotoxic α-particles from 212 Pb, with the anti-CD37 antibody NNV003, targeting B-cell malignancies. The goal of this study was to explore 212 Pb-NNV003 for treatment of CD37 positive chronic lymphocytic leukaemia and non-Hodgkin's lymphoma in preclinical mouse models.An anti-proliferative effect of 212 Pb-NNV003 was observed in both chronic lymphocytic leukaemia (MEC-2) and Burkitt's lymphoma (Daudi) cells in vitro. In biodistribution experiments, accumulation of 212 Pb-NNV003 was 23%ID/g and 16%ID/g in Daudi and MEC-2 tumours 24 h post injection. In two intravenous animal models 90% of the mice treated with a single injection of 212 Pb-NNV003 were alive 28 weeks post cell injection. Median survival times of control groups were 5-9 weeks. There was no significant difference between different specific activities of 212 Pb-NNV003 with regards to therapeutic effect or toxicity. For therapeutically effective activities, a transient haematological toxicity was observed. This study shows that 212 Pb-NNV003 is effective and safe in preclinical models of CD37 positive chronic lymphocytic leukaemia and non-Hodgkin's lymphoma, warranting future clinical testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.