Compared with conventional chemotherapy, encapsulation of drugs in nanoparticles can improve efficacy and reduce toxicity. However, delivery of nanoparticles is often insufficient and heterogeneous because of various biological barriers and uneven tumor perfusion. We investigated a unique multifunctional drug delivery system consisting of microbubbles stabilized by polymeric nanoparticles (NPMBs), enabling ultrasound-mediated drug delivery. The aim was to examine mechanisms of ultrasound-mediated delivery and to determine if increased tumor uptake had a therapeutic benefit. Cellular uptake and toxicity, circulation and biodistribution were characterized. After intravenous injection of NPMBs into mice, tumors were treated with ultrasound of various pressures and pulse lengths, and distribution of nanoparticles was imaged on tumor sections. No effects of low pressures were observed, whereas complete bubble destruction at higher pressures improved tumor uptake 2.3 times, without tissue damage. An enhanced therapeutic effect was illustrated in a promising proof-of-concept study, in which all tumors exhibited regression into complete remission.
Microbubbles (MBs) are routinely used as contrast agents for ultrasound imaging. The use of ultrasound in combination with MBs has also attracted attention as a method to enhance drug delivery.We have developed a technology platform incorporating multiple functionalities, including imaging and therapy in a single system consisting of MBs stabilized by polyethylene glycol (PEG) coated polymeric nanoparticles (NPs). The NPs, containing lipophilic drugs and/or contrast agents, are composed of the widely used poly(butyl cyanoacrylate) (PBCA) polymer and prepared in a single step. MBs stabilized by these NPs are subsequently prepared by self-assembly of NPs at the MB air/liquid interface. Here we show that these MBs can act as contrast agents for conventional ultrasound imaging. Successful encapsulation of iron oxide NPs inside the PBCA NPs is demonstrated, potentially enabling the NPs/MBs to be used as magnetic resonance imaging (MRI) and/or molecular ultrasound imaging contrast agents. By precise tuning of the applied ultrasound pulse, the MBs burst and the NPs constituting the shell are released. This could result in increased local deposit of NPs into target tissue providing improved therapy and imaging contrast compared to freely distributed NPs.
The blood-brain barrier (BBB) constitutes a significant obstacle for the delivery of drugs into the central nervous system (CNS). Nanoparticles have been able to partly overcome this obstacle and can thus improve drug delivery across the BBB. Furthermore, focused ultrasound in combination with gas filled microbubbles has opened the BBB in a temporospatial manner in animal models, thus facilitating drug delivery across the BBB. In the current study we combine these two approaches in our quest to develop a novel, generic method for drug delivery across the BBB and into the CNS. Nanoparticles were synthesized using the polymer poly(butyl cyanoacrylate) (PBCA), and such nanoparticles have been reported to cross the BBB to some extent. Together with proteins, these nanoparticles self-assemble into microbubbles. Using these novel microbubbles in combination with focused ultrasound, we successfully and safely opened the BBB transiently in healthy rats. Furthermore, we also demonstrated that the nanoparticles could cross the BBB and deliver a model drug into the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.