In optical communications, four-dimensional (4D) modulation formats encode information onto the quadrature components of two arbitrary orthogonal states of polarisation of the optical field. Many analytical models available in the optical communication literature allow, within a first-order perturbation framework, the computation of the average power of the nonlinear interference (NLI) accumulated in coherent fibre-optic transmission systems. However, all such models only operate under the assumption of transmitted polarisation-multiplexed two-dimensional (PM-2D) modulation formats, which only represent a limited subset of the possible dual-polarisation 4D (DP-4D) formats. Namely, only those where data transmitted on each polarisation channel are mutually independent and identically distributed. This paper presents a step-by-step mathematical derivation of the extension of existing NLI models to the class of arbitrary DP-4D modulation formats. In particular, the methodology adopted follows the one of the popular enhanced Gaussian noise model, albeit dropping most assumptions on the geometry and statistic of the transmitted 4D modulation format. The resulting expressions show that, whilst in the PM-2D case the NLI power depends only on different statistical high-order moments of each polarisation component, for a general DP-4D constellation, several other cross-polarisation correlations also need to be taken into account.
Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players’ input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.
We study an optical WDM channel from an interference channel viewpoint. An achievable rate region that strictly outperforms treating interference as noise is presented, along with a capacity region outer bound.
We assess the accuracy of a recently introduced nonlinear interference model for general dual-polarization 4D formats. Unlike previous models for polarization-multiplexed 2D formats, an average gap from split-step Fourier simulations within 0.1 dB is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.