The aversive aspects of nicotine withdrawal are powerful motivational forces contributing to the tobacco smoking habit. We evaluated measures of affective and somatic aspects of nicotine withdrawal in C57BL/6J and BALB/cByJ mice. Nicotine withdrawal was induced by termination of chronic nicotine delivery through osmotic minipumps or precipitated with the nicotinic acetylcholine receptor (nAChR) antagonists mecamylamine or dihydro-beta-erythroidine (DHbetaE). A rate-independent discrete-trial intracranial self-stimulation threshold procedure was used to assess brain reward function. Anxiety-like behavior and sensorimotor gating were assessed in the light-dark box and prepulse inhibition (PPI) tests, respectively. Acoustic startle response and somatic signs of withdrawal were also evaluated. Spontaneous nicotine withdrawal after 14-day exposure to 10-40 mg/kg/day nicotine induced no alterations in anxiety-like behavior, startle reactivity, PPI, or somatic signs in either strain, and no changes in thresholds in C57BL/6J mice. Extended 28-day exposure to 40 mg/kg/day nicotine induced threshold elevations, increased somatic signs, and anxiety-like behavior 24 h post-nicotine in C57BL/6J mice; thresholds returned to baseline levels by day 4 in nicotine-exposed mice. Mecamylamine or DHbetaE administration induced threshold elevations in nicotine-exposed C57BL/6J mice compared with saline-exposed mice. In conclusion, administration of relatively high nicotine doses over prolonged periods of time induces both the affective and somatic aspects of spontaneous nicotine withdrawal in the mouse, while exposure to nicotine for shorter periods of time is sufficient for nAChR antagonist-precipitated nicotine withdrawal. The current study is one of the first to demonstrate reward deficits associated with both spontaneous and nAChR antagonist-precipitated nicotine withdrawal in C57BL/6J mice.
Tobacco smoking continues to be a major global health hazard despite significant public awareness of its harmful consequences. Although several treatment options are currently available for smoking cessation, these medications are effective in only a small subset of smokers, and relapse rates continue to be high. Therefore, a better understanding of the neurobiological mechanisms that mediate tobacco dependence is essential for the development of effective smoking cessation medications. Nicotine is the primary psychoactive component of tobacco that drives the harmful tobacco smoking habit. Nicotine binds to nicotinic acetylcholine receptors (nAChRs) in the brain, resulting in the release of a wide range of neurotransmitters, including glutamate and γ-aminobutyric acid (GABA). This review article focuses on the role of the excitatory glutamate system and inhibitory GABA system in nicotine dependence. Accumulating evidence suggests that blockade of glutamatergic transmission or facilitation of GABAergic transmission attenuates the positive reinforcing and incentive motivational aspects of nicotine, inhibits the reward-enhancing and conditioned rewarding effects of nicotine, and blocks nicotine-seeking behavior. Chronic nicotine exposure produced long-term neuroadaptations that contribute to nicotine withdrawal, but the role of GABA and glutamate transmission in nicotine withdrawal is less understood. Overall, the findings presented in this review provide strong converging evidence for the potential effectiveness of glutamatergic and GABAergic medications in nicotine dependence and potentially nicotine withdrawal.
To assess which nicotinic acetylcholine receptors (nAChRs) are involved in the aversive aspects of nicotine withdrawal, brain reward function and the somatic signs of nicotine withdrawal were assessed in mice that lack α7 and β4 nAChR subunits. Brain reward function was assessed with the intracranial self-stimulation (ICSS) procedure, in which elevations in ICSS thresholds reflect an anhedonic mood state. At 3–6 h of spontaneous nicotine/saline withdrawal, thresholds were elevated in nicotinewithdrawing α7+/+ and β4+/+, but not α7−/− or β4−/−, mice compared with saline-withdrawing mice, indicating a delay in the onset of withdrawal in the knockout mice. From 8 to 100 h of withdrawal, thresholds in α7+/+ and α7−/− mice were equally elevated, whereas thresholds in β4+/+ and β4−/− mice returned to baseline levels. Somatic signs were attenuated in nicotine-withdrawing β4−/−, but not α7−/−, mice. Administration of a low dose of the nAChR antagonist mecamylamine induced threshold elevations in α7−/−, but not α7+/+, mice, whereas the highest dose tested only elevated thresholds in α7+/+ mice. Mecamylamine-induced threshold elevations were similar in β4−/− and β4+/+ mice. In conclusion, null mutation of the α7 and β4 nAChR subunits resulted in a delayed onset of the anhedonic aspects of the spontaneous nicotine withdrawal syndrome. Previous findings of attenuated somatic signs of nicotine withdrawal in β4−/−, but not α7−/−, mice were confirmed in the present study, indicating an important role for β4-containing nAChRs in the somatic signs of nicotine withdrawal. The mecamylamine-precipitated withdrawal data suggest that compensatory adaptations may occur in constitutive α7−/− mice or that mecamylamine may interact with other receptors besides nAChRs in these mice. In summary, the present results indicate an important role for α7 and β4-containing nAChRs in the anhedonic or somatic signs of nicotine withdrawal.
Recent studies suggest running wheel activity to be naturally rewarding and reinforcing; considering the shared neuro-behavioural characteristics with drug-induced reward situations, wheel running behaviour gains interest as a tool to study mechanisms underlying reward-sensitivity. Previously, we showed that wheel running has the potential to disrupt the daily organization of home cage behaviour in female C57BL/6 [de Visser L, van den Bos R, Spruijt BM. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion. Behav Brain Res 2005;160:382-8]. In the present study, we investigated the effects of novelty-induced stress on wheel running and its impact on home cage behaviour in male C57BL/6 and DBA/2 mice. Our aim was to determine whether wheel running may be used as a tool to study both genetic and environmentally induced differences in sensitivity to rewarding behaviour in mice. One group of male mice was placed in an automated home cage observation system for 2 weeks with a wheel integrated in the cage. A second group of mice was allowed to habituate to this cage for 1 week before a running wheel was introduced. Results showed a pronounced sensitising effect of novelty on the level of wheel running in C57Bl/6 mice but not in DBA mice. Overall levels of wheel running were higher in DBA/2 mice. Furthermore, wheel running affected circadian rhythmicity in DBA/2 mice but not in C57BL/6 mice.From these findings we tentatively suggest that wheel running behaviour could serve as a tool to study the interaction between genetic and environmental factors in sensitivity to rewarding behaviour in mice. As it is displayed spontaneously and easy to monitor, wheel running may be well suitable to be included in high-throughput phenotyping assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.