Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.
Mood disorders, such as major depressive disorder, are characterized by abnormal reward responsiveness. The Response Bias Probabilistic Reward Task (hereafter referred to as probabilistic reward task (PRT)) quantifies reward responsiveness in human subjects, and an equivalent animal assessment is needed to facilitate preclinical translational research. Thus, the goals of the present studies were to develop, validate and characterize a rat analog of the PRT. Adult male Wistar and Long–Evans rats were trained in operant testing chambers to discriminate between two tone stimuli that varied in duration (0.5 and 2 s). During a subsequent test session consisting of 100 trials, the two tones were made ambiguous (0.9 and 1.6 s) and correct identification of one tone was reinforced with a food pellet three times more frequently than the other tone. In subsequent experiments, Wistar rats were administered either a low dose of the dopamine D2/D3 receptor agonist pramipexole (0.1 mg kg−1, subcutaneous) or the psychostimulant amphetamine (0.5 mg kg−1, intraperitoneal) before the test session. Similar to human subjects, both rat strains developed a response bias toward the more frequently reinforced stimulus, reflecting robust reward responsiveness. Mirroring prior findings in humans, a low dose of pramipexole blunted response bias. Moreover, in rats, amphetamine potentiated response bias. These results indicate that in rats, reward responsiveness can be quantified and bidirectionally modulated by pharmacological manipulations that alter striatal dopamine transmission. Thus, this new procedure in rats, which is conceptually and procedurally analogous to the one used in humans, provides a reverse translational platform to investigate abnormal reward responsiveness across species.
Rationale Chronic nicotine administration decreases the functioning of the cystine-glutamate antiporter system xc_ which is hypothesized to promote nicotine-taking and -seeking behaviors. N-acetylcysteine (NAC), a cystine pro-drug, increases the activity of the cystine-glutamate antiporter system xc_. Thus, NAC could potentially reverse nicotine-induced alterations in glutamatergic transmission and decrease nicotine taking and seeking. Objectives and Methods To test this hypothesis in the present study, the effects of acute NAC treatment (30, 60, 90 mg/kg i.p.) on nicotine (fixed- and progressive-ratio schedules) and food (fixed-ratio schedule) self-administration were assessed in rats. In addition, the effects of acute NAC treatment on cue-induced reinstatement of nicotine- and food-seeking behaviors were investigated. Finally, the effects of repeated daily NAC administration (60 mg/kg, i.p., 14 days) on nicotine and food self-administration were assessed. Results Acute NAC administration decreased nicotine self-administration but not food responding under a fixed-ratio schedule of reinforcement. In addition, acute NAC administration showed a non-significant trend in attenuating nicotine self-administration under a progressive-ratio schedule that was similar to the dose-response function under the fixed-ratio schedule. Furthermore, repeated NAC administration decreased nicotine self-administration from day 6 to 14 compared with vehicle treatment, with no indication of tolerance development. By contrast, repeated NAC administration decreased food responding from day 6 to 8 compared with vehicle treatment, and showed rapid development of tolerance. Finally, NAC administration attenuated cue-induced reinstatement of nicotine and food seeking. Conclusions Altogether, these findings suggest that NAC may be useful in promoting smoking cessation in humans.
Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Very high rates of tobacco smoking are seen in patients with schizophrenia. Importantly, smokers with schizophrenia generally have higher nicotine dependence scores, experience more severe withdrawal symptoms upon smoking cessation, have lower cessation rates than healthy individuals, and suffer from significant smoking-related morbidity and premature mortality compared with the general population. Interestingly, significant disturbances in cholinergic function are reported in schizophrenia patients. The high smoking-schizophrenia comorbidity observed in schizophrenia patients may be an attempt to compensate for this cholinergic dysfunction. Cholinergic neurotransmission plays an important role in cognition and is hypothesized to play an important role in schizophrenia-associated cognitive deficits. In this review, preclinical evidence highlighting the beneficial effects of nicotine and subtype-selective nicotinic receptor agonists in schizophrenia-associated cognitive deficits, such as working memory and attention, is discussed. Furthermore, some of the challenges involved in the development of procognitive medications, particularly subtype-selective nicotinic receptor agonists, are also discussed. Amelioration of schizophrenia-associated cognitive deficits may help in the treatment of schizophrenia-smoking comorbidity by promoting smoking cessation and thus help in the better management of schizophrenia patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.