Anhedonia, or markedly diminished interest or pleasure, is a hallmark symptom of major depression, schizophrenia, and other neuropsychiatric disorders. Over the past three decades, the clinical definition of anhedonia has remained relatively unchanged, although cognitive psychology and behavioral neuroscience have expanded our understanding of other reward-related processes. Here, we review the neural bases of the construct of anhedonia that reflects deficits in hedonic capacity, and is also closely linked to the constructs of reward valuation, decision-making, anticipation, and motivation. The neural circuits subserving these reward-related processes include the ventral striatum, prefrontal cortical regions, and afferent and efferent projections. Understanding anhedonia and other reward-related constructs will facilitate diagnosis and treatment of disorders that include reward deficits as key symptoms.
We have reported that neonatal infection leads to memory impairment after an immune challenge in adulthood. Here we explored whether events occurring as a result of early infection alter the response to a subsequent immune challenge in adult rats, which may then impair memory. In experiment 1, peripheral infection with Escherichia coli on postnatal day 4 increased cytokines and corticosterone in the periphery, and cytokine and microglial cell marker gene expression in the hippocampus of neonate pups. Next, rats treated neonatally with E. coli or PBS were injected in adulthood with lipopolysaccharide (LPS) or saline and killed 1-24 h later. Microglial cell marker mRNA was elevated in hippocampus in saline controls infected as neonates. Furthermore, LPS induced a greater increase in glial cell marker mRNA in hippocampus of neonatally infected rats, and this increase remained elevated at 24 h versus controls. After LPS, neonatally infected rats exhibited faster increases in interleukin-1 (IL-1) within the hippocampus and cortex and a prolonged response within the cortex. There were no group differences in peripheral cytokines or corticosterone. In experiment 2, rats treated neonatally with E. coli or PBS received as adults either saline or a centrally administered caspase-1 inhibitor, which specifically prevents the synthesis of IL-1, 1 h before a learning event and subsequent LPS challenge. Caspase-1 inhibition completely prevented LPS-induced memory impairment in neonatally infected rats. These data implicate IL-1 in the set of immune/inflammatory events that occur in the brain as a result of neonatal infection, which likely contribute to cognitive alterations in adulthood.
Increasing predictability of animal models of posttraumatic stress disorder (PTSD) has required active collaboration between clinical and preclinical scientists. Modeling PTSD is challenging, as it is a heterogeneous disorder with ≥20 symptoms. Clinical research increasingly utilizes objective biological measures (e.g., imaging, peripheral biomarkers) or nonverbal behaviors and/or physiological responses to complement verbally reported symptoms. This shift toward more-objectively measurable phenotypes enables refinement of current animal models of PTSD, and it supports the incorporation of homologous measures across species. We reviewed >600 articles to examine the ability of current rodent models to probe biological phenotypes of PTSD (e.g., sleep disturbances, hippocampal and fear-circuit dysfunction, inflammation, glucocorticoid receptor hypersensitivity) in addition to behavioral phenotypes. Most models reliably produced enduring generalized anxiety-like or depression-like behaviors, as well as hyperactive fear circuits, glucocorticoid receptor hypersensitivity, and response to long-term selective serotonin reuptake inhibitors. Although a few paradigms probed fear conditioning/extinction or utilized peripheral immune, sleep, and noninvasive imaging measures, we argue that these should be incorporated more to enhance translation. Data on female subjects, on subjects at different ages across the life span, or on temporal trajectories of phenotypes after stress that can inform model validity and treatment study design are needed. Overall, preclinical (and clinical) PTSD researchers are increasingly incorporating homologous biological measures to assess markers of risk, response, and treatment outcome. This shift is exciting, as we and many others hope it not only will support translation of drug efficacy from animal models to clinical trials but also will potentially improve predictability of stage II for stage III clinical trials.
Uncontrollable shock produces a constellation of behavioral changes that are not observed after equivalent escapable shock. These include interference with escape and potentiation of fear conditioning. The activation of corticotropin-releasing hormone (CRH) receptors within the caudal dorsal raphe nucleus (DRN) during inescapable tailshock (IS) has been shown to be critical for the development of these behavioral changes. CRH binds to two receptor subtypes, both of which are found in the DRN. The present set of studies examined which CRH receptor subtype mediates the effects of IS. Intra-DRN administration of the CRH(2) receptor antagonist anti-sauvagine-30 before IS dose-dependently blocked IS-induced behavioral changes; the CRH(1) receptor antagonist 2-methyl-4-(N-propyl-N-cycloproanemethylamino)-5-chloro-6-(2,4,6-trichloranilino)pyrimidine (NBI27914), administered in the same manner, did not. Moreover, the highly selective CRH(2) receptor agonist urocortin II (Ucn II) dose-dependently caused behavioral changes associated with IS in the absence of shock. Ucn II was effective at doses 100-fold lower than those previously required for CRH. The relationship between CRH(2) receptors and DRN 5-HT is discussed.
Background Anhedonia, or diminished interest or pleasure in rewarding activities, characterizes depression and reflects deficits in brain reward circuitries. Social stress induces anhedonia and increases depression risk, although the effect of social stress on brain reward function remains incompletely understood. Methods We assessed: 1) brain reward function in rats (using the intracranial self-stimulation procedure) and protein levels of brain-derived neurotrophic factor (BDNF) and related signaling molecules in response to chronic social defeat; 2) brain reward function during social defeat and chronic treatment with the antidepressants fluoxetine (5 mg/kg/day) or desipramine (10 mg/kg/day); and 3) forced swim test behavior after social defeat and fluoxetine treatment. Results Social defeat profoundly and persistently decreased brain reward function, reflecting an enduring anhedonic response, in susceptible rats, while resilient rats showed no long-term brain reward deficits. In the ventral tegmental area (VTA), social defeat, regardless of susceptibility or resilience, decreased and increased BDNF and phosphorylated AKT, respectively, whereas only susceptibility was associated with increased phosphorylated mammalian target of rapamycin (mTOR). Fluoxetine and desipramine reversed lower, but not higher, stress-induced brain reward deficits in susceptible rats. Fluoxetine decreased immobility in the forced swim test, as did social defeat. Conclusions These results suggest that the differential persistent anhedonic response to psychosocial stress may be mediated by VTA signaling molecules independent of BDNF, and indicate that greater stress-induced anhedonia is associated with antidepressant treatment resistance. Consideration of these behavioral and neurobiological factors associated with resistance to stress and antidepressant action may promote the discovery of novel targets to treat stress-related mood disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.