Subjects adjusted a local gauge figure such as to perceptually "fit" the apparent surfaces of objects depicted in photographs. We obtained a few hundred data points per session, covering the picture according to a uniform lattice. Settings were repeated 3 times for each of 3 subjects. Almost all of the variability resided in the slant; the relative spread in the slant was about 25% (Weber fraction). The tilt was reproduced with a typical spread of about 10°. The rank correlation of the slant settings of different observers was high, thus the slant settings of different subjects were monotonically related. The variability could be predicted from the scatter in repeated settings by the individual observers. Although repeated settings by a single observer agreed within 5%, observers did not agree on the value of the slant, even on the average. Scaling factors of a doubling in the depth dimension were encountered between different subjects. The data conformed quite well to some hypothetical fiducial global surface, the orientation of which was "probed" by the subject's local settings. The variability was completely accounted for by singleobserver scatter. These conclusions are based upon an analysis of the internal structure of the local settings. We did not address the problem of veridicality, that is, conformity to some "real object."
Photographs of scenes do not determine scenes in the sense that infinitely many different scenes could have given rise to any given photograph. In psychophysical experiments, observers have (at least partially) to resolve these ambiguities. The ambiguities also allow them to vary their response within the space of 'veridical' responses. Such variations may well be called 'the beholder's share' since they do not depend causally on the available depth cues. We determined the pictorial relief for four observers, four stimuli, and four different tasks. In all cases we addressed issues of reliability (scatter on repeated trials) and consistency (how well the data can be explained via a smooth surface, any surface). All data were converted to depth maps which allows us to compare the relief from the different operationalisations. As expected, pictorial relief can differ greatly either between observers (same stimulus, same task) or between operationalisations (same observer, same stimulus). However, when we factor out the essential ambiguity, these differences almost completely vanish and excellent agreement over tasks and observers pertains. Thus, observers often resolve the ambiguity in idiosyncratic ways, but mutually agree--even over tasks--in so far as their responses are causally dependent on the depth cues. A change of task often induces a change in 'mental perspective'. In such cases, the observers switch the 'beholder's share', which resolves the essential ambiguity through a change in viewpoint of their 'mental eye'.
The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project “The Hand Embodied” (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies.
There are some indications that haptic space like visual space is not Euclidean (e.g. Blumenfeld, 1937 Acta Psychologica 2 125-174). In a series of experiments, we investigated the haptic perception of spatial relations in a systematic way. We restricted ourselves to a horizontal plane at waist height. Blindfolded subjects were asked to perform three tasks with their right hand: (i) a reference bar was presented under four different orientations and subjects were asked to rotate a test bar such that it felt to be parallel to the reference bar; (ii) subjects had to rotate two test bars in such a way that they felt collinear; (iii) subjects had to point a test bar in the direction of a marker. Bars and marker could appear at nine different locations. In all experiments large systematic deviations (up to 40 degrees) were made. The deviations strongly correlated with horizontal (right-left) but not with vertical (forward-backward) distance. Subjects showed qualitatively identical trends but the size of the deviations was strongly subject-dependent. In addition, a significant haptic oblique effect was found. These results provide strong evidence that haptic space in non-Euclidean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.