The aim of this study was to analyze a variety of environmental organic contaminants of emerging concern (CEC) and their metabolites in representative digestate samples from Norwegian biogas production plants.
Uptake of 19 per-and polyfluoroalkyl substances (PFAS), including C3−C14 perfluoroalkyl carboxylic acids (PFCAs), C4, C6, and C8 perfluoroalkyl sulfonates (PFSAs), and four emerging PFAS, was investigated in two mushroom species (Agaricus bisporus and Agaricus subrufescens) cultivated in a biogas digestate-based substrate. Accumulation of PFAS in mushrooms was low and strongly chain-length dependent. Among the different PFCAs, bioaccumulation factors (log BAFs) decreased from a maximum of −0.3 for perfluoropropanoic acid (PFPrA; C3) to a minimum of −3.1 for perfluoroheptanoate (PFHpA; C7), with only minor changes from PFHpA to perfluorotridecanoate (PFTriDA; C13). For PFSAs, log BAFs decreased from perfluorobutane sulfonate (PFBS; −2.2) to perfluorooctane sulfonate (PFOS; −3.1) while mushroom uptake was not observed for the alternatives 3H-perfluoro-3-[(3-methoxy-propoxy)propanoic acid] (ADONA) and two chlorinated polyfluoro ether sulfonates. To the best of our knowledge, this is the first investigation of the uptake of emerging and ultra-short chain PFAS in mushrooms, and generally the results indicate very low accumulation of PFAS.
Farms utilizing sewage sludge and manure in their agronomic plant production are recognized as potential hotspots for environmental release of antibiotics and the resulting promotion of antibiotic resistance. As part of the circular economy, the use of biogas digestates for soil fertilizing is steadily increasing, but their potential contribution to the spreading of pharmaceutical residues is largely unknown. Digestates can be produced from a variety of biowaste resources, including sewage sludge, manure, food waste, and fish ensilage. We developed a method for the detection of 17 antibiotics and 2 steroid hormones and applied the method to detect pharmaceutical residues in digestates from most municipal biogas plants in Norway, covering a variety of feedstocks. The detection frequency and measured levels were overall low for most compounds, except a few incidents which cause concern. Specifically, relatively high levels of amoxicillin, penicillin G, ciprofloxacin, and prednisolone were detected in different digestates. Further, ipronidazole was detected in four digestates, although no commercial pharmaceutical products containing ipronidazole are currently registered in Norway. A simplified risk assessment showed a high risk for soil microorganisms and indicates the tendency for antibiotic-resistant bacteria for penicillin G and amoxicillin. For prednisolone and ipronidazole; however, no toxicity data is available for reliable risk assessments.
Graphical abstract
Correction for ‘Organic contaminants of emerging concern in Norwegian digestates from biogas production’ by Aasim M. Ali et al., Environ. Sci.: Processes Impacts, 2019, 21, 1498–1508.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.