The role of soil methylotrophs in methanol exchange with the atmosphere has been widely overlooked. Methanol can be derived from plant polymers and be consumed by soil microbial communities. In the current study, methanol-utilizing methylotrophs of 14 aerated soils were examined to resolve their comparative diversities and capacities to utilize ambient concentrations of methanol. Abundances of cultivable methylotrophs ranged from 10 6 -10 8 g soilDW. Methanol dissimilation was measured based on conversion of supplemented 14 C-methanol, and occurred at concentrations down to 0.002 lmol methanol g soilDW À 1. Tested soils exhibited specific affinities to methanol (a 0 s ¼ 0.01 d À 1 ) that were similar to those of other environments suggesting that methylotrophs with similar affinities were present. Two deep-branching alphaproteobacterial genotypes of mch responded to the addition of ambient concentrations of methanol (p0.6 lmol methanol g soilDW) in one of these soils. Methylotroph community structures were assessed by amplicon pyrosequencing of genes of mono carbon metabolism (mxaF, mch and fae). Alphaproteobacteria-affiliated genotypes were predominant in all investigated soils, and the occurrence of novel genotypes indicated a hitherto unveiled diversity of methylotrophs. Correlations between vegetation type, soil pH and methylotroph community structure suggested that plant-methylotroph interactions were determinative for soil methylotrophs.
The commercial availability of next generation sequencing (NGS) technologies facilitated the assessment of functional groups of microorganisms in the environment with high coverage, resolution, and reproducibility. Soil methylotrophs were among the first microorganisms in the environment that were assessed with molecular tools, and nowadays, as well with NGS technologies. Studies in the past years re-attracted notice to the pivotal role of methylotrophs in global conversions of methanol, which mainly originates from plants, and is involved in oxidative reactions and ozone formation in the atmosphere. Aerobic methanol utilizers belong to Bacteria, yeasts, Ascomycota, and molds. Numerous bacterial methylotrophs are facultatively aerobic, and also contribute to anaerobic methanol oxidation in the environment, whereas strict anaerobic methanol utilizers belong to methanogens and acetogens. The diversity of enzymes catalyzing the initial oxidation of methanol is considerable, and comprises at least five different enzyme types in aerobes, and one in strict anaerobes. Only the gene of the large subunit of pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH; mxaF) has been analyzed by environmental pyrosequencing. To enable a comprehensive assessment of methanol utilizers in the environment, new primers targeting genes of the PQQ MDH in Methylibium (mdh2), of the nicotinamide adenine dinucleotide-dependent MDH (mdh), of the methanol oxidoreductase of Actinobacteria (mdo), of the fungal flavin adenine nucleotide-dependent alcohol oxidase (mod1, mod2, and homologs), and of the gene of the large subunit of the methanol:corrinoid methyltransferases (mtaC) in methanogens and acetogens need to be developed. Combined stable isotope probing of nucleic acids or proteins with amplicon-based NGS are straightforward approaches to reveal insights into functions of certain methylotrophic taxa in the global methanol cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.