Several research works have demonstrated that beneficial microbes with the capacity to modulate the mucosal immune system (immunobiotics) are an interesting alternative to improve the outcome of bacterial and viral respiratory infections. Among the immunobiotic strains with the capacity to beneficially modulate respiratory immunity, Lactobacillus rhamnosus CRL1505 has outstanding properties. Although we have significantly advanced in demonstrating the capacity of L. rhamnosus CRL1505 to improve resistance against respiratory infections as well as in the cellular and molecular mechanisms involved in its beneficial activities, the potential protective ability of this strain or its immunomodulatory cellular fractions in the context of a secondary bacterial pneumonia has not been addressed before. In this work, we demonstrated that the nasal priming with non-viable L. rhamnosus CRL1505 or its purified peptidoglycan differentially modulated the respiratory innate antiviral immune response triggered by toll-like receptor 3 activation in infant mice, improving the resistance to primary respiratory syncytial virus (RSV) infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that peptidoglycan from L. rhamnosus CRL1505 significantly improved lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+ T cells as well as CD11c+SiglecF+IFN-β+ alveolar macrophages with the consequent increases of IFN-γ, IL-10, and IFN-β in the respiratory tract. Our results also showed that the increase of these three cytokines is necessary to achieve protection against respiratory superinfection since each of them are involved in different aspect of the secondary pneumococcal pneumonia that have to be controlled in order to reduce the severity of the infectious disease: lung pneumococcal colonization, bacteremia, and inflammatory-mediated lung tissue injury.
This work demonstrates the reduction of TLR3-mediated intestinal tissue injury by immunobiotic lactobacilli through the modulation of intraepithelial lymphocytes response. It is a step forward in the understanding of the cellular mechanisms involved in the antiviral capabilities of immunobiotic strains.
Our work is the first to demonstrate the ability of an immunobiotic strain to beneficially modulate inflammation-coagulation interactions during IFV infection. Interestingly, non-viable L. rhamnosus CRL1505 was as effective as the viable strain to beneficially modulate respiratory antiviral immune response.
Intravenous chemotherapy has poor access to metastatic lymph nodes (LNs) and is limited by short-lived drug concentrations. Here, we describe the administration of chemotherapy via the lymphatic network as a new concept for the prevention and treatment of metastatic LNs. A metastatic LN can be treated by the injection of drugs into an upstream LN, either the sentinel LN (SLN) or another upstream LN. In a mouse model, tumor cells were inoculated into the subiliac LN (SiLN) to induce metastasis to the proper axillary LN (PALN). Two routes were used for drug delivery to the PALN, namely from the SiLN and from the accessory axillary LN (AALN). We found that tumor masses were formed in lymphatic vessels between the SiLN and PALN. The flow of fluorescent solution injected into the SiLN towards the PALN decreased with tumor mass formation. Delivery from the AALN (free of metastatic tumor cells) to the PALN was identified as an alternative route. Intranodal injection can deliver high concentrations of drugs to secondary metastatic LNs. The study advocates a new concept for the prevention and treatment of metastatic lymph nodes whereby drugs injected into upstream lymph nodes can reach metastatic lymph nodes via the lymphatic network.
Systemic administration of drugs into the blood circulation is standard treatment for prevention of metastasis. However, systemic delivery cannot maintain sufficiently high concentrations of anticancer drugs in lymph nodes (LN). Here, we show that giving cisplatin (CDDP) using a lymphatic drug delivery system (LDDS) has the potential to treat false‐negative metastatic LN. We found that in MXH10/Mo‐lpr/lpr mice, which develop systemic swelling of LN up to 10 mm in diameter, accumulation of indocyanine green (ICG), which has a similar molecular weight to CDDP, in a target LN was greater for lymphatic delivery of ICG than for systemic (i.v.) administration. Furthermore, CDDP administration with a LDDS inhibited tumor growth in false‐negative metastatic LN and produced fewer adverse effects than systemically given CDDP. We anticipate that drug delivery using a LDDS will, in time, replace systemic chemotherapy for the treatment of false‐negative metastatic LN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.