Yüz tanıma sistemleri temassız olmaları ve kullanım kolaylığından dolayı pek çok uygulamada kendine yer bulmaktadır. Fakat teknolojinin gelişimi ve bilgiye erişimin kolaylaşması nedeniyle bu sistemler, sahte yüzler kullanılarak yapılan saldırılara karşı dayanıksızdır. Bu çalışmada, farklı renk uzaylarındaki kanallardan çıkarılan doku özniteliklerinin yüz sahteciliği tespitindeki başarımı incelenmiştir. Bu amaçla HSV, YCbCr ve daha önceden bu alanda kullanılmayan L*a*b* renk uzaylarının kanallarından çıkarılan çok seviyeli yerel ikili örüntü özniteliklerinin çeşitli birleşimleri ile yüz sahtecilik tespiti gerçekleştirilmiştir. Öznitelik vektörleri temel bileşenler analizi ile küçültülüp, destek vektör makinesi sınıflayıcısının eğitiminde kullanılmıştır. CASIA ve Replay-Attack veri setleri üzerinde yapılan deneylerde farklı kanallardan çıkarılan öznitelik birleşimlerinin yüz sahteciliği tespitinde başarılı olduğu görülmüştür.
Covid-19 gibi virüslerin ciddi solunum yolu hastalıklarına neden olması, yüz maskelerinin kullanımını önemli hale getirmiştir. Bu nedenle yüzden kişi doğrulama ve tanıma yapan sistemlerin maskeli yüzler üzerinde de çalışabilmesi beklenmektedir. Yüz tanıma sistemleri için oluşturulan veri setlerinde maskeli yüzler olmamakla birlikte günümüzde farklı model ve desenlerde maskeler kullanılabilmektedir. Bunlar yüz tanıma sistemlerinin başarısını düşürmektedir. Bu çalışmada öncelikle maskeli yüz veri seti üretmek için mevcut yüz veri setlerine farklı tipteki maskelerin giydirilmesine çalışılmıştır. Morfleme tekniği kullanılarak yüzün pozisyonlarına uygun olarak doğala yakın otomatik giydirme işlemi gerçekleştirilmiştir. Daha sonra maskeli/maskesiz yüzlerin tanınması için derin öğrenmeye dayalı bir model geliştirilmiş ve otomatik maske giydirme tekniği ile oluşturulan veri seti denenmiştir. CASIA-WebFace ve LFW (Labeled Faces in the Wild) veri setleri kullanılarak gerçekleştirilen deneylerde %96.5’in üzerinde maskeli yüz tanıma başarımı elde edilmiştir.
Biometric recognition systems are frequently used in daily life although they are vulnerable to attacks. Today, especially the increasing use of face authentication systems has made these systems the target of face presentation attacks (FPA). This has increased the need for sensitive systems detecting the FPAs. Recently surgical masks, frequently used due to the pandemic, directly affect the performance of face recognition systems. Researchers design face recognition systems only from the eye region. This motivated us to evaluate the FPA detection performance of the eye region. Based on this, in cases where the whole face is not visible, the FPA detection performance of other parts of the face has also been examined. Therefore, in this study, FPA detection performances of facial regions of wide face, cropped face, eyes, nose, and mouth was investigated. For this purpose, the facial regions were determined and normalized, and texture features were extracted using powerful texture descriptor local binary patterns (LBP) due to its easy computability and low processing complexity. Multi-block LBP features are used to obtain more detailed texture information. Generally uniform LBP patterns are used for feature extraction in the literature. In this study, the FPA detection performances of both uniform LBP patterns and all LBP patterns were investigated. The size of feature vector is reduced by principal component analysis, and real/fake classification is performed with support vector machines. Experimental results on NUAA, CASIA, REPLAY-ATTACK and OULU-NPU datasets show that the use of all patterns increased the performance of FPA detection.
Recognition of tire track patterns has an important role in both the investigation of crime scenes and the identification of vehicles involved in traffic accidents. Due to the rich texture information they have, texture features are generally used to recognize track images taken from tires. However, recognition of tire tracks taken from crime scenes has not been studied sufficiently. In this study, SIFT-based features and template matching methods were used to recognize tire track/tire track fragment images. In the experiments, fragments taken from clean tracks, dirty tracks and fragments taken from dirty tracks were matched with clean track images, and higher recognition performance was achieved compared to state of art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.