Recognition of tire track patterns has an important role in both the investigation of crime scenes and the identification of vehicles involved in traffic accidents. Due to the rich texture information they have, texture features are generally used to recognize track images taken from tires. However, recognition of tire tracks taken from crime scenes has not been studied sufficiently. In this study, SIFT-based features and template matching methods were used to recognize tire track/tire track fragment images. In the experiments, fragments taken from clean tracks, dirty tracks and fragments taken from dirty tracks were matched with clean track images, and higher recognition performance was achieved compared to state of art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.