Composite materials are becoming increasingly more valuable due to their high specific strength and stiffness. Currently, most components are operated for a number of service cycles and then replaced regardless of their actual condition. Embedded fiber Bragg gratings are under investigation for monitoring these components in real time and estimating their remaining life. This article presents research conducted on a novel technique for prediction of the remaining life of composites under fatigue loading using embedded fiber Bragg grating sensors. A prediction is made of the remaining life at every cycle based on data collected from the sensors and the previous loading history.
In this study, failure modes of foam core sandwich composites are investigated by using embedded Fiber Bragg Grating sensors. Sandwich specimens with Fiber Bragg Grating sensors, embedded inside the face sheet, are manufactured using vacuum infusion process and then subjected to a static and a cyclic loading under the three-point bending mode. Different failure modes are monitored utilizing the wavelength shift and the spectrum of Fiber Bragg Grating sensors. It is shown that the responses of the Fiber Bragg Grating sensor differ depending on damage modes thereby making structural health monitoring of sandwich structures possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.