Nanomaterial-based wound healing has tremendous potential for treating and preventing wound infections with its multiple benefits compared with traditional treatment approaches. In this regard, the physiochemical properties of nanomaterials enable researchers to conduct extensive studies on wound-healing applications. Nonetheless, issues concerning the use of nanomaterials in accelerating the efficacy of existing medical treatments remain unresolved. The present review highlights novel approaches focusing on the recent innovative strategies for wound healing and infection controls based on nanomaterials, including nanoparticles, nanocomposites, and scaffolds, which are elucidated in detail. In addition, the efficacy of nanomaterials as carriers for therapeutic agents associated with wound-healing applications has been addressed. Finally, nanomaterial-based scaffolds and their premise for future studies have been described. We believe that the in-depth analytical review, future insights, and potential challenges described herein will provide researchers an up-to-date reference on the use of nanomedicine and its innovative approaches that can enhance wound-healing applications.
Life-threatening bacterial infections have been well-controlled by antibiotic therapies and this approach has greatly improved the health and lifespan of human beings. However, the rapid and worldwide emergence of multidrug resistant (MDR) bacteria has forced researchers to find alternative treatments for MDR infections as MDR bacteria can sometimes resist all the present day antibiotic therapies. In this respect, nanomaterials have emerged as innovative antimicrobial agents that can be a potential solution against MDR bacteria. The present review discusses the advantages of nanomaterials as potential medical means and carriers of antibacterial activity, the types of nanomaterials used for antibacterial agents, strategies to tackle toxicity of nanomaterials for clinical applications, and limitations which need extensive studies to overcome. The current progress of using different types of nanomaterials, including new emerging strategies for the single purpose of combating bacterial infections, is also discussed in detail.
Nano-particles have been combined with antibiotics in recent studies to overcome multidrug-resistant bacteria. Here, we synthesized a nano-material in which Ag nano-particles were assembled with a ZnO nano-structure to form an Ag-ZnO (AZO) nano-composite at low temperature. This material was combined with erythromycin (Ery), an antibiotic effective towards gram-positive bacteria, using three different approaches (AZO + Ery (AZE) [centrifuged (AZE1), used separately after 1-h gap (AZE2), without centrifugation (AZE3)]) to prepare a nano-antibiotic against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). X-ray diffraction analysis and transmission electron microscopy confirmed the presence of Ag nano-particles and ZnO nano-structure. The elemental and chemical state of the elements present in the AZO nano-composite were assessed by X-ray photoelectron spectroscopy. The antibacterial activity of AZE samples against both Escherichia coli and S. aureus strains including MRSA was evaluated in antibacterial and morphological analyses. The AZE3 sample showed greater antibacterial activity than the other samples and was comparable to erythromycin. AZE3 was ~20-fold less prone to developing bacterial resistance following multiple exposures to bacteria compared to erythromycin alone. The AZE3 nano-composite showed good biocompatibility with 293 human embryonic kidney cells. Our newly synthesized nano-platform antibiotics may be useful against multidrug-resistant gram-positive bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.