Global warming and the limitations of using fossil fuels are a main concern of all societies, and thus, the development of alternative fuel sources is crucial to improving the current global energy situation. Biofuels are known as the best alternatives of unrenewable fuels and justify increasing extensive research to develop new and less expensive methods for their production. The most frequent biofuels are bioethanol, biobutanol, biodiesel, and biogas. The production of these biofuels is the result of microbial activity on organic substrates like sugars, starch, oil crops, non-food biomasses, and agricultural and animal wastes. Several industrial production processes are carried out in the presence of high concentrations of NaCl and therefore, researchers have focused on halophiles for biofuel production. In this review, we focus on the role of halophilic microorganisms and their current utilization in the production of all types of biofuels. Also, the outstanding potential of them and their hydrolytic enzymes in the hydrolysis of different kind of biomasses and the production of biofuels are discussed.
In recent years, the anticancer properties of metabolites from halophilic microorganisms have received a lot of attention. Twenty-nine halophilic bacterial strains were selected from a culture collection to test the effects of their supernatant metabolites on stem cell-like properties of six human cancer cell lines. Human fibroblasts were used as normal control. Sphere and colony formation assay were done to assess the stem cell-like properties. invasion and migration assay, and tumor development in mice model were done to assess the anti-tumorigenesis effect in vitro and in vivo. The metabolites from Salinivenus iranica demonstrated the most potent cytotoxic effect on breast cancer cell lines (IC50 = 100 µg/mL) among all strains, with no effect on normal cells. In MDA-MB-231 cells, the supernatant metabolites enhanced both early and late apoptosis (approximately 9.5% and 48.8%, respectively) and decreased the sphere and colony formation ability of breast cancer cells. Furthermore, after intratumor injection of metabolites, tumors developed in the mice models reduced dramatically, associated with increased pro-apoptotic caspase-3 expression. The purified cytotoxic molecule, a phenol amine with a molecular weight of 1961.73 Dalton (IC50 = 1 µg/mL), downregulated pluripotency gene SRY-Box Transcription Factor 2 (SOX-2) expression in breast cancer cells which is associated with resistance to conventional anticancer treatment. In conclusion, we suggested that the phenol amine molecule from Salinivenus iranica could be a potential anti-breast cancer component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.