The capacity of gelatin/chitosan/bioactive glass nanopowders (GEL/CS/BGNPs) scaffolds was investigated for increasing human endometrial stem cells (hEnSCs) differentiation into the endothelial cells in the presence of angiogenic factors. GEL/CS nanofibrous scaffold with different contents of BGNPs were fabricated and assessed. Expression of endothelial markers (CD31, vascular endothelial cadherin (VE-cadherin), and KDR) in differentiated cells was evaluated. Results showed the diameter of nanofiber increases with decreasing the BG content in GEL/CS scaffolds. Moreover, in vitro study indicated that the GEL/CS/BGNPs scaffold with 1.5% BGNPs content provided a suitable three-dimensional structure for endothelial cells differentiation. Thus, the GEL/CS/BGNPs scaffold can be recommended for blood vessels repair.
Endothelial dysfunction is a broad pathological disorder of the endothelium (innermost layer of blood vessels) which is assigned by vasoconstriction, thrombosis and ischemic diseases, alone or with other disorders such as coronary artery disease, hypertension and atherosclerosis. The fundamental imperfection of endothelial layer injury due to decrease in the number of functional endothelial progenitor cells and inhibition of endothelial progenitor cell differentiation, resulting into impairment of angiogenesis, vasculogenesis, tube formation properties and endothelial regeneration. Multiple significant therapeutic achievements in impediment and treatment of vascular diseases include the use of antithrombotic agents, statin class of drugs, lifestyle changes, and revascularization therapies. Nevertheless, a certain number of patients with endothelial dysfunction disease are resistant to the usual therapies, so new therapeutic strategies for endothelial dysfunction disease are urgently needed. Recent studies show that stem cell-based therapy has important promise for repair and treatment of vascular dysfunction. In this study, we describe a novel choice for treatment of endothelial dysfunction in vascular regenerative medicine via the human endometrial stem cell culture (as a new source for the increasing the number of endothelial progenitor cells) with bioglass (angiogenic agent) to investigate the enhancing expression of CD34, CD31 and gene markers of endothelial progenitor cells and endothelial cells. In the end, application of immunoprivileged, readily available sources of adult stem cells like human endometrial stem cells with bioglass would be a promising strategy to increase the number of endothelial progenitor cells and promote spontaneous angiogenesis needed in endothelial layer repair and regeneration.
Background:The scope of this study was to preserve whole detailed structure of dissected and decalcified bones, taken from used cadavers, by a new plastination technique.Materials and Methods:Specimens we used in this study were sheep femurs and human bones including pelvis, femur, tibia, and fibula. Bones, at first, fixed with 5% formalin and were decalcified with 5% nitric acid, and then were fixed again and washed under the tap water. The resulted flexible bones were dehydrated in −25°C acetone and degreased them in +25°C acetone. Then, the experimental and control specimen were placed in the vacuum chamber for forced impregnation with our new flexible unsaturated polyester resin (UP89 method) and silicon resin (S10 method), respectively. Finally, the strength and flexibility of plastinated decalcified specimens were investigated by tensometer, and the weight diversity was measured by digital balance.Results:Plastinated bones prepared by this technique were found to be dried, non-fragile, durable, odorless, non-greasy, and demonstrating all detailed structures of the bones. Tensile and weight tests results indicated that plastinated decalcified femurs have owned higher flexibility and strength but lesser weight than plastinated undecalcified femurs. The characteristics of both experimental and control groups of plastinated decalcified specimens were found to have no significant difference.Conclusions:Our synthesized resin found to be much more economical than conventional plastination method. In more details, properties of these new products were the same as, S10 method, from points of strength, flexibility and weight, but, since the money cost for producing them was about one fifth that of S10 method.
Background Repairing dermal skin defects denotes a challenging obstacle in wound healing. Wound healing activities of estrogen have been noted in many experimental models proposing their beneficial role in wound closure and treatments of impaired wound healing. To study the most significant problem in dermal defect regeneration, namely collagen formation and insufficient blood supply, this study aimed to evaluate different concentrations of estrogen in the co-culture of fibroblast and endothelial cells. Methods The human fibroblast (C163) and Human umbilical vein endothelial cells (HUVEC) were co-cultured and treated with different concentrations of estrogen solution. The cytotoxic effect of estrogen solution was evaluated by MTT assay while expression of endothelial markers (CD31) and Vimentin in treated cells was examined using Real-time PCR and Immunofluorescence analysis. Wound healing capacity in human fibroblast cells was studied by a scratch test assay. Results Estrogen has a dose-dependent proliferation effect on C163 and HUVEC co-culture cells with a significant growth inhibition at concentrations higher than 75 ng/ml concentration. We demonstrated that estrogen increased the growth, proliferation, and migration of C163 and HUVEC co-culture cells, accordingly, cell viability and scratch tests. C163 and HUVEC co-culture cells were cultured by estrogen treatments, which also improved the expression of the CD31 and Vimentin markers. Conclusions These results provide further insight into the function of biological agents in the wound healing process and may have significant approaches for the use of estrogen in skin wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.