Microcracks in neutron-irradiated nuclear grade graphite have been examined in detail for the first time using a combination of transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), energy dispersive X-ray (EDX), and energy filtered TEM (EFTEM). Filler particles from both unirradiated Pile Grade A (PGA) and three irradiated British Experimental Pile 'O' (BEPO) graphite specimens were investigated with received doses ranging from 0.4 to 1.44 displacements per atom (dpa) and an irradiation temperature of between 20-120°C. We suggest that the concentration and potentially the size of microcracks increase with increasing neutron irradiation and show that disordered carbon material is present in a range of microcracks (of varying size and shape) in all specimens including unirradiated material. EFTEM and EELS data showed that these cracks contained carbon material of lower density and graphitic character than that of the surrounding bulk graphite. The presence of partially filled microcracks has potentially significant implications for the development of microstructural models for the prediction of radiation-induced dimensional and property changes in nuclear graphite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.