Simulating propagation of sound and audio rendering can improve the sense of realism and the immersion both in complex acoustic environments and dynamic virtual scenes. In studies of sound auralization, the focus has always been on room acoustics modeling, but most of the same methods are also applicable in the construction of virtual environments such as those developed to facilitate computer gaming, cognitive research, and simulated training scenarios. This paper is a review of state-of-the-art techniques that are based on acoustic principles that apply not only to real rooms but also in 3D virtual environments. The paper also highlights the need to expand the field of immersive sound in a web based browsing environment, because, despite the interest and many benefits, few developments seem to have taken place within this context. Moreover, the paper includes a list of the most effective algorithms used for modelling spatial sound propagation and reports their advantages and disadvantages. Finally, the paper emphasizes in the evaluation of these proposed works.
Given that physics can be fundamental for realistic and interactive Web3D applications, a number of JavaScript versions of physics engines have been introduced during the past years. This paper presents the implementation of the rigid body physics component, as defined by the X3D specification, in the X3DOM environment, and the creation of dynamic 3D interactive worlds. We briefly review the state of the art in current technologies for Web3D graphics, including HTML5, WebGL and X3D, and then explore the significance of physics engines in building realistic Web3D worlds. We include a comprehensive review of JavaScript physics engine libraries, and proceed to summarize the significance of our implementation while presenting in detail the methodology followed. The results obtained so far from our cross-browser experiments demonstrate that real-time interactive scenes with hundreds of rigid bodies can be constructed and operate with acceptable frame rates, while the allowing the user to maintain the scene control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.