Promotion of cycling can improve the sustainability level of a city or an urban area. This study presents a methodology that audits the bikeability level of the urban road environment across three selected routes in the city of Volos, Greece. This methodology is a useful toolkit in order to evaluate and improve the bikeability level of the urban road environment and also evaluate existing bikeways. Four suitably trained auditors rode their bikes and evaluated the bikeability level using an audit tool in order to audit specific features that influence bicycling suitability across the road segments and intersections of the selected routes. Furthermore, the auditors graded specific features of the road environment in order to set a bikeability score for each tested route. Finally, this study concludes that the bikeability level of the selected routes was moderate and certain actions are necessary in order to be improved.
The utilization of conclusions from the data analysis of road traffic accidents is of high importance for the development of targeted traffic safety measures, which will effectively reduce the rate of road traffic accidents, thus promoting road safety. Considering the problems of time and money, it is not practical to improve road safety in all the places where road traffic accidents occur. Therefore, the process of identifying accident-prone locations, known as black spots, is a cost-effective and efficient way to analyze the causes of road accidents and reduce them. Identifying black spots is an effective strategy to reduce accidents. The core methods that may be used in the process of identifying the black spots of a road network are the sorting, grouping, and accident prediction methods. However, in practice, it is easy to overlook certain factors that significantly contribute to defining and characterizing a spot on the road network as black. Therefore, suggestions to carry out projects required to reduce security risks shall not be based on the above methods. Machine learning algorithms that in recent years have been widely used in the field of predicting a road traffic accident cover these weaknesses. They can effectively classify data sets and make a connection between factors and the severity of events. Machine learning algorithms include classification, regression, clustering, and dimensionality reduction. In this work, a study was conducted on road traffic accidents that took place on the national and provincial network of Northern Greece from 2014 to 2018, with the aim of determining the black spots. The study provided the general public access to a database of black spots on the road network of Northern Greece. At the same time, it created a point of reference for the recognition of the points in question located on the entire road network, and selected a black spot determination model, after having compared specific measures to determine the quality of a model, which resulted from the application of a logistic regression and machine learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.