Vehicular communications is expected to be one of the key applications for cellular networks during the following decades. Key international organizations have already described in detail a number of related use cases, along with their requirements. This article provides a comprehensive analysis of these use cases and a harmonized view of the requirements for the latest and most advanced autonomous driving applications. It also investigates the extent of support that 4G and 5G networks can offer to these use cases in terms of delay and spectrum needs. The paper identifies open issues and discusses trends and potential solutions.
Automated driving requires the support of critical communication services with strict performance requirements. Existing fifth-generation (5G) schedulers residing at the base stations are not optimized to differentiate between critical and non-critical automated driving applications. Thus, when the traffic load increases, there is a significant decrease in their performance. Our paper introduces SOVANET, a beyond 5G scheduler that considers the Radio Access Network (RAN) load, as well as the requirements of critical, automated driving applications and optimizes the allocation of resources to them compared to non-critical services. The proposed scheduler is evaluated through extensive simulations and compared to the typical Proportional Fair scheduler. Results show that SOVANET’s performance for critical services presents clear benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.