Ever since the Wright Brothers' first powered flight in 1903, commercial aircraft have relied on liquid hydrocarbon fuels. However, the need for greenhouse gas emission reductions along with recent progress in battery technology for automobiles has generated strong interest in electric propulsion in aviation. This work provides a first-order assessment of the energy, economic, and environmental implications of all-electric aircraft. We show that batteries with significantly higher specific energy and lower cost, coupled with further reductions of costs and CO 2 intensity of electricity, are necessary for exploiting the full range of economic and environmental benefits provided by all-electric aircraft. A global fleet of all-electric aircraft serving all flights up to a 400-600 nmi (741-1,111 km) distance would demand an equivalent of 0.6-1.7% of worldwide electricity consumption in 2015. Whereas lifecycle CO 2 emissions of all-electric aircraft depend 2 on the power generation mix, all direct combustion emissions and thus direct air pollutants and direct non-CO 2 warming impacts would be eliminated.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
Electric and hybrid-electric propulsion technologies in aviation are becoming more attractive for aviation stakeholders not only due to the resulting reduction or elimination of the dependency on oil, whose availability and price are uncertain, but also because they are more reliable and efficient than traditional internal combustion engines. Moreover, combined with distributed electric propulsion (DEP), these technologies have shown potential in significantly reducing civil aircraft community noise impact and contribute towards delivering the strict mid-to-long-term environmental goals set by organisations worldwide, such as ACARE and NASA. This paper examines the noise impact of a concept tube and wing aircraft that falls in the A320 category and features various DEP systems using different power supply units (turboshaft engines or batteries) and number of electric propulsors. Meanwhile, considerations required for the transition from conventional to electric propulsion are discussed. Estimated Noise-Power-Distance (NPD) curves and noise exposure contour maps are also presented. It is concluded that indeed, the propulsors' number is a key parameter for optimising the environmental performance of DEP aircraft and hence maximising the noise benefits. Also, it is shown that based on the entry into service year (2035) technology, totally electric aircraft tend to have a larger noise footprint than aircraft using hybrid electric propulsion systems.
Propeller and rotor based propulsion systems are the dominating choice of power delivery system in the upcoming Urban Air Mobility market. Fully electric air-taxis (car sized vehicles with Vertical Take-off and Landing, VTOL, capabilities) concepts are using the benefits of the scalable properties of electric motors to distribute propulsor units all over the airframe. The large variety of concepts and configurations of these vehicles poses a serious issue in predicting noise generated on the ground. The need for a high-level model to aid in acoustic decision making is evident. Through the demonstrated methodology of computationally deriving Noise - Power - Distance curves for conventional turbo fan aircraft, this paper delivers the capability of dealing with propeller propulsion systems and the associated propeller tonal noise sources to generate the NPDs and therefore noise exposure maps. The aims can be broken down into two objectives: a) demonstrate the capabilities of the proposed propeller harmonics noise scaling laws to calculate noise variation from a baseline scenario and b) incorporate the scaling components into the larger capability of producing noise exposure contours, by the means of computationally deriving NPD curves for propeller powered aircraft. Preliminary NPD curves for General Aviation sized propeller power aircraft are generated and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.