During the last decade the offshore wind industry grew ceaselessly and engineering challenges continuously arose in that area. Installation of foundation piles, known as monopiles, is one of the most critical phases in the construction of offshore wind farms. Prior to installation a drivability study is performed, by means of pile driving models. Since the latter have been developed for small-diameter piles, their applicability for the analysis of large-diameter monopiles is questionable. In this paper, a three-dimensional axisymmetric pile driving model with non-local soil reaction is presented. This new model aims to capture properly the propagation of elastic waves excited by impact piling and address non-local soil reaction. These effects are not addressed in the available approaches to predict drivability and are deemed critical for large-diameter monopiles. Predictions of the new model are compared to those of a one-dimensional model typically used nowadays. A numerical study is performed to showcase the disparities between the two models, stemming from the effect of wave dispersion and non-local soil reaction. The findings of this numerical study affirmed the significance of both mechanisms and the need for further developments in drivability modeling, notably for large-diameter monopiles.
This paper presents a computationally efficient mode-matching method to predict the relative axial motion of two elastic rods in frictional contact. The motion is of the stick-slip type and is non-uniform along the rods. The proposed method utilizes the piecewise linearity of the problem in time and space. The original set of nonlinear partial differential equations describing the dynamics of the coupled system is first reduced to a system of linear, per time interval, ordinary differential equations by means of modal decomposition. The global modes are used for one of the two rods, while for the other rod, different modes are identified per time interval based on the regions in stick or slip phase. Subsequently, the system response is obtained by combining the piecewise linear solutions. A comparison of the solution method proposed with standard numerical techniques shows its advantage both in terms of computational time and accuracy. Numerical examples demonstrate the capability of the method to analyse cases involving either harmonic- or impact-type forces that drive the relative motion. Although the discussion in this paper is limited to the one-dimensional configuration, the approach is generic and can be extended to problems in more dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.