Background: 5-Fluorouracil (5-FU) is a well-established anticancer drug. Several studies have also demonstrated the anticancer potential of Cannabidiol (CBD) against various malignancies, including skin cancer. Reported synergistic effects of this combination fascinate researchers to consider this for the management of skin cancer. Methods: A simple and robust HPLC method for simultaneous estimation of 5-FU and CBD at its single wavelength (237 nm) was developed and validated. The separation of these compounds was performed on Waters® HPLC system with Hypersil™ C18 RP-column using methanol and water in gradient flow as mobile phase. The method could effectively quantify the nanogram levels of both analytes simultaneously in plasma spiked samples and various nanoformulations. The analytical performance of the proposed method was validated in terms of various parameters, such as linearity, ruggedness, specificity, and few others. Results: 5-FU as well as CBD were successfully detected at 237 nm with retention time 1.4 and 1.84 minutes respectively. Calibration curves were found to be linear with R2 values of 0.985 and 0.984 for 5-FU and CBD respectively. The method was linear, precise, specific and robust. Additionally, prepared method successfully employed in determining concentration of both drugs in combitorial nanoformulations. Conclusion: The findings show that the developed method was simple, reliable, sensitive and economical. It could be employed for the simultaneous estimation of 5-FU and CBD in various in vitro and in vivo studies.
Resveratrol (RVT) is a well known phyto-chemical and is widely used in dietary supplements and botanical products. It shows a wide range of pharmacological/beneficial effects. Therefore, it can be a potential candidate to be developed as phyto-pharmaceutical. Multiple diseases are reported to be treated by the therapeutic effect of RVT since it has antioxidant, anti-cancer activity and anti-inflammatory activities. It also has a major role in diabetes, arthritis, cardiac disorder and platelet aggregation etc. The major requirements are establishments regarding safety, efficacy profile and physicochemical characterization. As it is already being consumed in variable maximum daily dose, there should not be a major safety concern but the dose needs to be established for different indications. Clinical trials are also being reported in different parts of the world. Physicochemical properties of the moiety are also well reported. Moreover, due to its beneficial effect on health it leads to the development of some intellectual property in the form of patents.
Studies on biofilm-related infections are gaining prominence owing to their involvement in most clinical infections and seriously threatening global public health. A biofilm is a natural form of bacterial growth ubiquitous in ecological niches, considered to be a generic survival mechanism adopted by both pathogenic and non-pathogenic microorganisms and entailing heterogeneous cell development within the matrix. In the ecological niche, quorum sensing is a communication channel that is crucial to developing biofilms. Biofilm formation leads to increased resistance to unfavourable ecological effects, comprising resistance to antibiotics and antimicrobial agents. Biofilms are frequently combated with modern conventional medicines such as antibiotics, but at present, they are considered inadequate for the treatment of multi-drug resistance; therefore, it is vital to discover some new antimicrobial agents that can prevent the production and growth of biofilm, in addition to minimizing the side effects of such therapies. In the search for some alternative and safe therapies, natural plant-derived phytomedicines are gaining popularity among the research community. Phytomedicines are natural agents derived from natural plants. These plant-derived agents may include flavonoids, terpenoids, lectins, alkaloids, polypeptides, polyacetylenes, phenolics, and essential oils. Since they are natural agents, they cause minimal side effects, so could be administered with dose flexibility. It is vital to discover some new antimicrobial agents that can control the production and growth of biofilms. This review summarizes and analyzes the efficacy characteristics and corresponding mechanisms of natural-product-based antibiofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and their sources, along with their mechanism, quorum sensing signalling pathways, disrupting extracellular matrix adhesion. The review also provides some other strategies to inhibit biofilm-related illness. The prepared list of newly discovered natural antibiofilm agents could help in devising novel strategies for biofilm-associated infections.
In the given study, a new reverse-phase high-performance liquid chromatography (RP-HPLC) method has been reported for the simultaneous estimation of ciprofloxacin hydrochloride (CPX) and rutin (RUT) using quality by design (QbD) approach. The analysis was carried out by applying the Box–Behnken design having fewer design points and less experimental runs. It relates between factors and responses and gives statistically significant values, along with enhancing the quality of the analysis. CPX and RUT were separated on the Kromasil C18 column (4.6 × 150 mm, 5 μm) using an isocratic mobile phase combination of phosphoric acid buffer (pH 3.0) and acetonitrile with the ratio of 87:13% v/v at a flow rate of 1.0 mL/min. CPX and RUT were detected at their respective wavelengths of 278 and 368 nm using a photodiode array detector. The developed method was validated according to guideline ICH Q2 R (1). The validation parameters taken were linearity, system suitability, accuracy, precision, robustness, sensitivity, and solution stability which were in the acceptable range. The findings suggest that the developed RP-HPLC method can be successfully applied to analyze novel CPX-RUT-loaded bilosomal nanoformulation prepared by thin-film hydration technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.