The rhizome of turmeric is widely used in indigenous medicine. [1] A paste made from powdered rhizome of Curcuma longa Linn., mixed with slaked lime applied locally, is an ancient household remedy for sprains, muscular pain and inflamed joints. It is also applied in poultices to relieve pain and inflammation. [2] The volatile oil and curcumin obtained from C. longa exhibit potent antiinflammatory effect. [3] Curcumin is yellow coloured phenolic pigment, [4] obtained from powdered rhizome of C. longa Linn. (Family-Zingiberaceae). It is the major constituent of the oleoresin of turmeric. In the crude extract of rhizomes of C. longa about 70-76% curcumin is present along with about 16% demethoxycurcumin and 8% bisdemethoxycurcumin. It is extensively used for imparting colour and flavour to the food and in the traditional Indian medicine, turmeric powder is used to treat a wide variety of diseases. Extensive scientific research on curcumin have demonstrated a wide spectrum of therapeutic effects such as antiinflammatory, [5] antibacterial, [6] antiviral, [7] antifungal, [8] antitumor, [9] antispasmodic [10] and hepatoprotective. [11] Recently, its potential utility in autoimmune deficiency syndrome (AIDS) has been demonstrated. [12]-[14] In this review, the findings on curcumin's antiinflammatory activity and its mechanisms are presented. Preclinical studies Curcumin and antiinflammatory activity Arora et al reported antiinflammatory activity in different fractions of the petroleum ether extract of C. longa. [5] The total
The aim of this study was to investigate the wound healing effects of clove oil (CO) via its encapsulation into nanoemulsion. Optimized nanoemulsion (droplet size of 29.10 nm) was selected for wound healing investigation, collagen determination, and histopathological examination in rats. Optimized nanoemulsion presented significant would healing effects in rats as compared to pure CO. Nanoemulsion also presented significant enhancement in leucine content (0.61 mg/g) as compared to pure CO (0.50 mg/g) and negative control (0.31 mg/g). Histopathology of nanoemulsion treated rats showed no signs of inflammatory cells. These results suggested that nanoemulsion of CO was safe and nontoxic.
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.