The rhizome of turmeric is widely used in indigenous medicine. [1] A paste made from powdered rhizome of Curcuma longa Linn., mixed with slaked lime applied locally, is an ancient household remedy for sprains, muscular pain and inflamed joints. It is also applied in poultices to relieve pain and inflammation. [2] The volatile oil and curcumin obtained from C. longa exhibit potent antiinflammatory effect. [3] Curcumin is yellow coloured phenolic pigment, [4] obtained from powdered rhizome of C. longa Linn. (Family-Zingiberaceae). It is the major constituent of the oleoresin of turmeric. In the crude extract of rhizomes of C. longa about 70-76% curcumin is present along with about 16% demethoxycurcumin and 8% bisdemethoxycurcumin. It is extensively used for imparting colour and flavour to the food and in the traditional Indian medicine, turmeric powder is used to treat a wide variety of diseases. Extensive scientific research on curcumin have demonstrated a wide spectrum of therapeutic effects such as antiinflammatory, [5] antibacterial, [6] antiviral, [7] antifungal, [8] antitumor, [9] antispasmodic [10] and hepatoprotective. [11] Recently, its potential utility in autoimmune deficiency syndrome (AIDS) has been demonstrated. [12]-[14] In this review, the findings on curcumin's antiinflammatory activity and its mechanisms are presented. Preclinical studies Curcumin and antiinflammatory activity Arora et al reported antiinflammatory activity in different fractions of the petroleum ether extract of C. longa. [5] The total
Objectives Carbon nanotubes (CNTs) have attracted much attention by researchers worldwide in recent years for their small dimensions and unique architecture, and for having immense potential in nanomedicine as biocompatible and supportive substrates, as a novel tool for the delivery of therapeutic molecules including peptides, RNA and DNA, and also as sensors, actuators and composites. Key findings CNTs have been employed in the development of molecular electronic, composite materials and others due to their unique atomic structure, high surface area-tovolume ratio and excellent electronic, mechanical and thermal properties. Recently they have been exploited as novel nanocarriers in drug delivery systems and biomedical applications. Their larger inner volume as compared with the dimensions of the tube and easy immobilization of their outer surface with biocompatible materials make CNTs a superior nanomaterial for drug delivery. Literature reveals that CNTs are versatile carriers for controlled and targeted drug delivery, especially for cancer cells, because of their cell membrane penetrability. Summary This review enlightens the biomedical application of CNTs with special emphasis on utilization in controlled and targeted drug delivery, as a diagnostics tool and other possible uses in therapeutic systems. The review also focuses on the toxicity aspects of CNTs, and revealed that genotoxic potential, mutagenic and carcinogenic effects of different types of CNTs must be explored and overcome by formulating safe biomaterial for drug delivery. The review also describes the regulatory aspects and clinical and market status of CNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.