Integration of artificial intelligence (AI) techniques in wireless infrastructure, real-time collection, and processing of end-user devices is now in high demand. It is now superlative to use AI to detect and predict pandemics of a colossal nature. The Coronavirus disease 2019 (COVID-19) pandemic, which originated in Wuhan China, has had disastrous effects on the global community and has overburdened advanced healthcare systems throughout the world. Globally; over 4,063,525 confirmed cases and 282,244 deaths have been recorded as of 11th May 2020, according to the European Centre for Disease Prevention and Control agency. However, the current rapid and exponential rise in the number of patients has necessitated efficient and quick prediction of the possible outcome of an infected patient for appropriate treatment using AI techniques. This paper proposes a fine-tuned Random Forest model boosted by the AdaBoost algorithm. The model uses the COVID-19 patient's geographical, travel, health, and demographic data to predict the severity of the case and the possible outcome, recovery, or death. The model has an accuracy of 94% and a F1 Score of 0.86 on the dataset used. The data analysis reveals a positive correlation between patients' gender and deaths, and also indicates that the majority of patients are aged between 20 and 70 years.
Terrorist Activities worldwide has led to the development of sophisticated methodologies for analyzing terrorist groups and networks. Ongoing and past research has found that Social Network Analysis (SNA) is most effective method for predictive counter-terrorism. Social Network Analysis (SNA) is an approach towards analyzing the terrorist networks to better understand the underlying structure of a network and to detect key players within the network and their links throughout the network. It is also need of the hour to convert available raw data into valuable information for the purpose of global security. Comparative study among SNA tools testify their applicability and usefulness for data gathered through online and offline social sources. However it is advised to incorporate temporal analysis using data mining methods, to improve the capability of SNA tools to handle dynamic social media data. This paper examine various aspects of Social Network Analysis as applied to terrorism, taking empirical data, and open source data based studies into account. This work primarily focuses on different types of decentralized terrorist networks and nodes. The nodes can be classified as organizations, places or persons. We take help of varied centrality measures to identify key players in this network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.