In this paper, we study boundary value problems for differential inclusions, involving Hilfer fractional derivatives and nonlocal integral boundary conditions. New existence results are obtained by using standard fixed point theorems for multivalued analysis. Examples illustrating our results are also presented.
In this paper, we study a coupled system involving Hilfer fractional derivatives with nonlocal integral boundary conditions. Existence and uniqueness results are obtained by applying Leray-Schauder alternative, Krasnoselskii’s fixed point theorem, and Banach’s contraction mapping principle. Examples illustrating our results are also presented.
In this paper, we study boundary value problems, involving the Hilfer fractional derivative, for pantograph fractional differential equations and inclusions supplemented by nonlocal integral boundary conditions. Existence and uniqueness results are obtained by using well-known fixed point theorems for single and multi-valued functions. Examples illustrating our results are also presented.
We discuss the existence and uniqueness of solutions for the Langevin fractional differential equation and its inclusion counterpart involving the Hilfer fractional derivatives, supplemented with three-point boundary conditions by means of standard tools of the fixed-point theorems for single and multivalued functions. We make use of Banach’s fixed-point theorem to obtain the uniqueness result, while the nonlinear alternative of the Leray-Schauder type and Krasnoselskii’s fixed-point theorem are applied to obtain the existence results for the single-valued problem. Existence results for the convex and nonconvex valued cases of the inclusion problem are derived via the nonlinear alternative for Kakutani’s maps and Covitz and Nadler’s fixed-point theorem respectively. Examples illustrating the obtained results are also constructed. (2010) Mathematics Subject Classifications. This study is classified under the following classification codes: 26A33; 34A08; 34A60; and 34B15.
In this article, we discuss the existence and uniqueness of solutions for a new class of coupled system of sequential fractional differential equations involving
ψ
-Hilfer fractional derivatives, supplemented with multipoint boundary conditions. We make use of Banach’s fixed point theorem to obtain the uniqueness result and the Leray-Schauder alternative to obtain the existence result. Examples illustrating the main results are also constructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.