In this article, we discuss the existence and uniqueness of solutions for a new class of coupled system of sequential fractional differential equations involving
ψ
-Hilfer fractional derivatives, supplemented with multipoint boundary conditions. We make use of Banach’s fixed point theorem to obtain the uniqueness result and the Leray-Schauder alternative to obtain the existence result. Examples illustrating the main results are also constructed.
In this paper, we introduce an extension of the Hilfer fractional derivative, the “Hilfer fractional quantum derivative”, and establish some of its properties. Then, we introduce and discuss initial and boundary value problems involving the Hilfer fractional quantum derivative. The existence of a unique solution of the considered problems is established via Banach’s contraction mapping principle. Examples illustrating the obtained results are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.