In this paper we present a new algorithm for the solution of Hamilton-Jacobi-Bellman equations related to optimal control problems. The key idea is to divide the domain of computation into subdomains which are shaped by the optimal dynamics of the underlying control problem. This can result in a rather complex geometrical subdivision, but has the advantage that every subdomain is invariant with respect to the optimal dynamics and then the solution can be computed independently in each subdomain. The features of this dynamics-dependent domain decomposition can be exploited to speed up the computation and for an efficient parallelization, since the classical transmission conditions at the boundaries of the subdomains can be avoided. For their properties, the subdomains are patches in the sense introduced by Ancona and Bressan in 1999. Several examples in dimension two and three illustrate the properties of the new method.
Abstract. This paper deals with a class of stochastic optimal control problems (SOCP) in presence of state-constraints. It is well-known that for such problems the value function is, in general, discontinuous and its characterization by a Hamilton-Jacobi equation requires additional assumptions involving an interplay between the boundary of the set of constraints and the dynamics of the controlled system. Here, we give a characterization of the epigraph of the value function without assuming the usual controllability assumptions. For this end, the SOCP is first translated into a state-constrained stochastic target problem. Then a level-set approach is used to describe the backward reachable sets of the new target problem. It turns out that these backward-reachable sets describe the value function. The main advantage of our approach is that it allows to handle easily the state constraints by an exact penalization. However, the target problem involves a new state variable and a new control variable that is unbounded.
Abstract. This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order HamiltonJacobi-Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.
We introduce a class of numerical schemes for optimal stochastic control problems based on a novel Markov chain approximation, which uses, in turn, a piecewise constant policy approximation, Euler-Maruyama time stepping, and a Gauß-Hermite approximation of the Gaußian increments. We provide lower error bounds of order arbitrarily close to 1/2 in time and 1/3 in space for Lipschitz viscosity solutions, coupling probabilistic arguments with regularization techniques as introduced by Krylov. The corresponding order of the upper bounds is 1/4 in time and 1/5 in space. For sufficiently regular solutions, the order is 1 in both time and space for both bounds. Finally, we propose techniques for further improving the accuracy of the individual components of the approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.