Drought accompanied with reduced precipitation is one of the key manacles to global agricultural throughput and is expected to escalate further hence posing major challenges to future food safety. For a sustainable agricultural environment, drought resistant plant growth promoting rhizobacteria (PGPR) are new encouraging prospect, which are inexpensive and have no side effects, as those of synthetic fertilizers. In the present study, five strains of Pseudomonas aeruginosa, the strain MK513745, strain MK513746, strain MK513747, strain MK513748, and strain MK513749 were used as drought tolerant PGPR with multiple traits of IAA production, N fixation, P solubilization, siderophore producing capabilities. The strain MK513745 and strain MK513749 produced higher quantities of indole acetic acid (116±0.13 and 108±0.26 μg ml-1). MK513749 yielded 12 different indole compounds in GCMS analysis. The strain MK513748 yielded maximum S.I. (3.33mm) for phosphate solubilizing test. Maximum nitrogen concentration was produced (0.18 μg ml-1) by strain MK513746. Percent siderophore units ranged from 2.65% to 2.83% as all five pseudomonas strains were siderophore positive. In all growth experiments of plant microbe interaction two varieties of Vigna radiata (AZRI-06, NM-11) plants inoculated with P. aeruginosa strains under drought stress responded significantly (P<0.05) better than control stressed plants. Maximum shoot length was enhanced up-to 125%, pod/plant 172%, number of grains 65%, 100 seed weight 95%, 100 seed straw weight 124% and total yield 293% were recorded in plants inoculated with drought stress tolerant PGPR in both varieties as compared to respective stressed control plants. Photosynthetic activity, membrane stability (45%), water content (68%) and antioxidant efficacy (19%) were improved with PGPR inoculations. The variety NM-11 (V2) was more tolerant to drought stress with inoculations of Pseudomonas strains than AZRI-06 (V1). Inoculations with these indole acetic acid producing strains would be suitable for plant growth promotion in areas facing water deficiency.
AimThe presence of Phosphorus as a macronutrient in soil is necessary for plant growth and its deficiency restricts crop yield. Therefore, the aim of current study is to isolate promising rhizospheric phosphate solubilizing bacteria presenting with plant growth promoting (PGP) traits and their utilization as biofertilizers to improve Triticum aestivum (Var. Galaxy 2013) growth and nutrition.MethodOut of 30 isolates obtained from rhizosphere of various plants of different regions, 10 best PSRB strains (WumS-3, WumS-4, WumS-5, WumS-11, WumS-12, WumS-21, WumS-24, WumS-25, WumS-26 and WumS-28) were selected based on their high P solubilization and good PGP (auxin, psiderphore, HCN, Nitrogen fixation) activities. Triticum aestivum (Var. Galaxy 2013) was used as an experimental crop under laboratory and field conditions.ResultsIn this study, P solubilization capacity of selected strains were found 4–7 solubilization index on agar plate and 30–246 µg/ml in liquid broth respectively. The optimum conditions for phosphate solubilization under in vitro condition were found 35 °C at pH 7, glucose as good carbon source and ammonium nitrate as a good nitrogen source. Furthermore, the selected strains had the ability to produces phytohormones (indole acetic acid), siderophore, ammonia and Hydrogen Cyanide. Finally, PSRB inoculum showed significant (p < 0.05) increase (50%–80%) in seed germination while 10–90% increase in root length and shoot length was found as compared to control in laboratory condition. Under natural conditions, 40–80% increase in seed germination while 5–34.8% increase in shoot length and 5–96% increase in seed weight was also observed.ConclusionIsolated strains are promising PSRB that enhance plant growth and this research is a base for recommending the use of these bacterial strains for biofertilizer, as an alternative of chemical fertilizer, for Triticum aestivum L. production.
BackgroundInsects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants.ResultsSuccessful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 μg/g tissue of Cry1Ac and 0.568 μg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein.ConclusionLocating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.
Salinity is one of the major agricultural concern that significantly limits the crop productivity. The plant growth promoting rhizobacteria (PGPR) may contribute in sustainable crop production under salt stress. The current study was designed to isolate the Indole Acetic Acid (IAA) producing salt tolerant PGPR to promote the growth of cotton ( Gossypium hirsutum , FH-142) and induce its salt stress tolerance. Ten Salt Tolerant (ST) bacterial strains were screened for their PGP trait in vitro and evaluated for their beneficial effect on cotton plants growth by plant–microbe interaction assay in lab and under natural condition. GC–MS analysis of the metabolites of the selected bacterial strains confirmed the presence of indolic compounds like indole, indole-3-butyramide, benzylmalonic acid and 4-methyl-2-pyrrolidinone. The bacterial isolates ST4, ST5, ST6, ST15, ST16, ST17, ST18, ST20, ST22 and ST25 were identified as Bacillus sp., B. sonorensis , B. cereus , B. subtilis, Brevibacillus sp. B. safensis , B. paramycoides, Bacillus sp., B. cereus and B. tequilensis respectively on the basis of 16S rDNA sequencing. Bacteria inoculated plants had a significant (P < 0.05) increase in percentage germination up to (31%), root length (17%) and shoot length (34%) in lab while in wire house pot experiments, maximum enhancement in root length (31%) and shoot length (29%) was observed. ST bacterial strains inoculation improved the chlorophyll content index (34%), relative water content (36%), leaf area (33%), absorption of K + (28%) and decreased the uptake of Na + (58%) from soil in plants under salt stress over control in pot experiment. These ST PGPR have the potential to act as plant defense agents by enhancing plant growth, productivity, and tolerance in saline environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.