(1) Comparable PGs were found among the TAVs in different models; (2) pinwheeling indices were found to be different between both TAVs; (3) turbulence patterns among both TAVs translated according to RSS were different. Rigid aortic models yield more conservative estimates of turbulence; (4) both TAVs exhibit peak maximal RSS that exceeds platelet activation 100 Pa threshold limit.
Polymeric heart valves (PHV) can be engineered to serve as alternatives for existing prosthetic valves due to higher durability and hemodynamics similar to bioprosthetic valves. The purpose of this study is to evaluate the effect of geometry on PHVs coaptation and hemodynamic performance. The two geometric factors considered are stent profile and leaflet arch length, which were varied across six valve configurations. Three models were created with height to diameter ratio of 0.6, 0.7, and 0.88. The other three models were designed by altering arch height to stent diameter ratio, to be 0, 0.081, and 0.116. Particle image velocimetry (PIV) experiments were conducted on each PHV to characterize velocity, vorticity, turbulent characteristics, effective orifice area (EOA), and regurgitant fraction. This study revealed that the presence of arches as well as higher stent profile reduced regurgitant flow down to 5%, while peak systole downstream velocity reduced to 58% and Reynolds Shear Stress values reduced 40%. Further, earlier reattachment of the forward flow jet was observed in PHVs with leaflet arches. These findings indicate that although both geometric factors help diminish the commissural gap during diastole, leaflet arches induce a larger jet opening, yielding to earlier flow reattachment and lower energy dissipation.
Transcatheter aortic valve implantation (TAVI) has become a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in TAVI procedures for over a decade, with over 100,000 implantations to date. However, with only 6 years follow up, little is known about the long-term durability of biological tissue. Moreover, the high cost of tissue harvesting and chemical treatment procedures favor the development of alternative synthetic valve leaflet materials. Textile polyester is one such material which provides outstanding folding and strength properties combined with proven biocompatibility, and could therefore be considered as a candidate to replace the biological valve leaflets in TAVI procedures. For that purpose, in addition to the mechanical properties, the hemodynamic properties of the synthetic material should be comparable to the properties of biological tissue. An ideal replacement heart valve would provide low static and dynamic regurgitation, ensure laminar flow across the valve, and limit the turbidity of flow downstream of the valve. The purpose of the present work is to compare in vitro the mechanical and hemodynamic performances of textile woven polyester valves with biological ones. Testing results indicate that textile valves trade elasticity for superior mechanical strength, relative to biological tissue. Despite this, the dynamic flexibility of textile valve leaflets strongly resembled what was seen with biological leaflets. Regurgitation, as well as slightly modified turbulent patterns, in textile valves was higher than biological valves due to the increased porosity, but, rapid tissue ingrowth post-implantation would likely mitigate this effect. Together these findings provide additional evidence favoring the use of textile polyester as a synthetic heart valve leaflet material.
The most widely implanted prosthetic heart valves are either mechanical or bioprosthetic. While the former suffers from thrombotic risks, the latter suffers from a lack of durability. Textile valves, alternatively, can be designed with durability and to exhibit hemodynamics similar to the native valve, lowering the risk for thrombosis. Deviations from native valve hemodynamics can result in an increased Reynolds Shear Stress (RSS), which has the potential to instigate hemolysis or shear-induced thrombosis. This study is aimed at characterizing flow in multiple textile valve designs with an aim of developing a low profile valve. Valves were created using a shaping process based on heating a textile membrane and placed within a left heart simulator. Turbulence and bulk hemodynamics were assessed through particle imaging velocimetry (PIV), along with flow and pressure measurements. Overall, RSS was reduced for low profile valves relative to high profile valves, but was otherwise similar among low profile valves. However, leakage was found in 3 of the 4 low profile valve designs driving the fabric design for low profile valves. Through textile design, low profile valves can be created with favorable hemodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.