Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.
Polymeric heart valves (PHVs) hold the promise to be more durable than bioprosthetic heart valves and less thrombogenic than mechanical heart valves. We introduce a new framework to manufacture hemocompatible polymeric leaflets for HV (PHV) applications using a novel material comprised of interpenetrating networks (IPNs) of hyaluronan (HA) and linear low density polyethylene (LLDPE). We establish and characterize the feasibility of the material as a substitute leaflet material through basic hemodynamic measurements in a trileaflet configuration, in addition to demonstrating superior platelet response and clotting characteristics. Plain LLDPE sheets were swollen in a solution of silylated-HA, the silylated-HA was then crosslinked to itself before it was reverted back to native HA via hydrolysis. Leaflets were characterized with respect to (1) bending stiffness, (2) hydrophilicity, (3) whole blood clotting, and (4) cell (platelet and leukocyte) adhesion under static conditions using fresh human blood. In vitro hemodynamic testing of prototype HA/LLDPE IPN PHVs was used to assess feasibility as functional HVs. Bending stiffness was not significantly different from natural fresh leaflets. HA/LLDPE IPNs were more hydrophilic than LLDPE controls. HA/LLDPE IPNs caused less whole blood clotting and reduced cell adhesion compared to the plain LLDPE control. Prototype PHVs made with HA/LLDPE IPNs demonstrated an acceptable regurgitation fraction of 4.77 ± 0.42%, and effective orifice area in the range 2.34 ± 0.5 cm2. These results demonstrate strong potential for IPNs between HA and polymers as future hemocompatible HV leaflets. Further studies are necessary to assess durability and calcification resistance.
We hypothesize that the formation of the closing vortex and subsequent b-datum regurgitation jet in bileaflet mechanical heart valves is governed by the magnitude of the driving mean aortic pressure (MAP), and that this sensitivity does impact the blood damage index (BDI) corresponding to platelet activation and lysis. High spatial resolution time resolved (1 kHz) as well as phase locked particle image velocimetry techniques captured the dynamic leaflet closure and regurgitation jet of a model 25 mm St. Jude Medical BMHV. Cell trajectories were estimated using Lagrangian particle tracking analysis while the leaflet kinematics was quantified by tracking the leaflet tip-position throughout closure. The non-principal as well as principal shear stress loading histories along each cell trajectory revealed BDI for platelet activation and lysis as a function of cell initial position, release time-point, and blood pressure. Results show that the leaflet closing time reduces by roughly 10 ms, in response to an increase in MAP by 40 mmHg. We report that higher MAP leads to a stronger b-datum vortex and jet formation. Platelet activation BDI lowers with a higher MAP due to reduction in exposure times despite an increase in principal shear stress experienced. Platelet lysis BDI however increases with higher MAP. Maximum BDI may occur for cells initially in the b-datum zone during the onset of leaflet closure. Our results provide a better understanding of BDI of the regurgitant b-datum jet and sheds light on the potential importance of blood damage testing under hypertensive conditions.
The most widely implanted prosthetic heart valves are either mechanical or bioprosthetic. While the former suffers from thrombotic risks, the latter suffers from a lack of durability. Textile valves, alternatively, can be designed with durability and to exhibit hemodynamics similar to the native valve, lowering the risk for thrombosis. Deviations from native valve hemodynamics can result in an increased Reynolds Shear Stress (RSS), which has the potential to instigate hemolysis or shear-induced thrombosis. This study is aimed at characterizing flow in multiple textile valve designs with an aim of developing a low profile valve. Valves were created using a shaping process based on heating a textile membrane and placed within a left heart simulator. Turbulence and bulk hemodynamics were assessed through particle imaging velocimetry (PIV), along with flow and pressure measurements. Overall, RSS was reduced for low profile valves relative to high profile valves, but was otherwise similar among low profile valves. However, leakage was found in 3 of the 4 low profile valve designs driving the fabric design for low profile valves. Through textile design, low profile valves can be created with favorable hemodynamics.
Shear induced hemolysis (SIH) refers to the rupture of red blood cells in shear flows resulting in the release of hemoglobin into plasma. Hemolysis in turn triggers a chain of bio-chemical events involving all the components of blood leading to the formation of thrombosis (blood clots). While SIH is negligible in a healthy circulatory system, it is widespread in life saving blood contacting devices such as heart valves, ventricular assist devices, and blood pumps. Thus an accurate physical understanding of the process of hemolysis is critical towards developing better predictive models of SIH, particularly in the context of engineering future blood contacting devices that are significantly more blood cell friendly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.