Axially doped p-i-n InAs0.93Sb0.07 nanowire arrays have been grown on Si substrates and fabricated into photodetectors for shortwave infrared detection. The devices exhibit a leakage current density around 2 mA/cm(2) and a 20% cutoff of 2.3 μm at 300 K. This record low leakage current density for InAsSb based devices demonstrates the suitability of nanowires for the integration of III-V semiconductors with silicon technology.
We determine the composition of intrinsic as well as extrinsic contributions to the anomalous Hall effect (AHE) in the isoelectronic L1_{0} FePd and FePt alloys. We show that the AHE signal in our 30 nm thick epitaxially deposited films of FePd is mainly due to an extrinsic side jump, while in the epitaxial FePt films of the same thickness and degree of order the intrinsic contribution is dominating over the extrinsic mechanisms of the AHE. We relate this crossover to the difference in spin-orbit strength of Pt and Pd atoms and suggest that this phenomenon can be used for tuning the origins of the AHE in complex alloys.
We use the phenomena of mode localization and vibration confinement in pairs of weakly coupled, nearly identical microelectromechanical (MEMS) resonators as an ultrasensitive technique of detecting added mass on the resonator. The variations in the eigenstates for induced mass additions are studied and compared with corresponding resonant frequency shifts in pairs of MEMS resonators that are coupled electrostatically. We demonstrate that the relative shifts in the eigenstates can be over three orders of magnitude greater than those in resonant frequency for the same addition of mass. We also investigate the effects of voltage controlled electrical spring tuning on the parametric sensitivity of such sensors and demonstrate sensitivities tunable by over 400%.
Carbon nanotube (CNT)-copper nanocomposites are promising materials for lightweight highampacity conductors. The key issue in hybridization of CNT and metal is creating a strong bonding between them. This requires proper modification of the CNT surface. However, experimental works on determining the effect of interfacial functionalization on the properties of the metal/CNT system is scarce. In this paper, the effect of CNT surface modification on the morphology, interfacial interactions, and electrical properties Cu/CNT hybrid system is investigated. For this purpose, CNTs with carboxyl, thiol, and nitrogen doped surface groups were used as substrate for growth of Cu particles via a facile electrochemical process. It is observed that not only the morphology but also the chemical state of the Cu deposits are affected by the surface functional group on CNT. Thiol group significantly enhances copper wettability towards CNT, facilitating a uniform deposition of copper, and impedes oxidation. Also, Cu/CNT thin films fabricated via vacuum filtration that contain thiol-activated CNTs shows four and seven times higher electrical conductivity compared with systems that contain carboxyl and Ndoped surface groups, respectively.
This paper addresses the synthesis and a detailed electrical analysis of individual copper nanowires (CuNWs). One dimensional CuNWs are chemically grown using bromide ions (Br) as a co-capping agent. By partially replacing alkyl amines with Br, the isotropic growth on Cu seeds was suppressed during the synthesis. To study the electrical properties of individual CuNWs, a fabrication method is developed which does not require any e-beam lithography process. Chemically grown CuNWs have an ampacity of about 30 million amps per cm, which is more than one order of magnitude larger than bulk Cu. These good quality, easy to synthesize CuNWs are excellent candidates for creating high ampacity wires and flexible printable electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.