Recently multiple valued logic has attracted the attention of digital system designers. Scalable threshold voltage values of carbon nanotube field-effect transistors (CNFETs) can easily be utilised for multiple-V t circuit designs. In this study, a novel energy-efficient method for designing one-digit adder is proposed. The suggested design employ ternary multiplexers to select successor and predecessor of input trits for the output node values. This study describes the novel ternary multiplexer, successor and predecessor cells. The proposed full adder design is evaluated using HSPICE simulation with the standard 32 nm CNFET technology under different operational conditions, including different supply voltages, variation of output load and various operational temperatures. In addition, the sensitivity to process variations of the design is investigated. Finally, the proposed designs are compared with state-of-the-art ternary circuits and based on the simulation results, the proposed full adder cell decreases the power consumption up to 2.3 times lower than the best existing techniques in the literature.
In recent decades, power consumption has become an essential factor in attracting the attention of integrated circuit (IC) designers. Multiple-valued logic (MVL) and approximate computing are some techniques that could be applied to integrated circuits to make power-efficient systems. By utilizing MVL-based circuits instead of binary logic, the information conveyed by digital signals increases, and this reduces the required interconnections and power consumption. On the other hand, approximate computing is a class of arithmetic computing used in systems where the accuracy of the computation can be traded-off for lower energy consumption. In this paper, we propose novel designs for exact and inexact ternary multipliers based on carbon-nanotube field-effect transistors (CNFETs). The unique characteristics of CNFETs make them a desirable alternative to MOSFETs. The simulations are conducted using Synopsys HSPICE. The proposed design is compared against existing ternary multipliers. The results show that the proposed exact multiplier reduces the energy consumption by up to 6 times, while the best inexact design improves energy efficiency by up to 35 time compared to the latest state-of-the-art methods. Using the imprecise multipliers for image processing provides evidence that these proposed designs are a low-power system with an acceptable error.
This paper investigates the use of carbon nanotube field effect transistors (CNFETs) for the design of ternary full adder cells. The proposed circuits have been designed based on the unique properties of CNFETs such as having desired threshold voltages by adjusting diameter of the CNFETs gate nanotubes. The proposed circuits are examined using HSPICE simulator with the standard 32 nm CNFET technology. The proposed methods are simulated at different conditions such as different supply voltages, different temperature and operational frequencies. Simulation results show that the proposed designs are faster than the state of the art CNFET based ternary full adders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.