Summary Nanoparticles (NPs) are increasingly used as biodegradable vehicles to selectively deliver therapeutic agents such as drugs or antigens to cells. The most widely used vehicle for this purpose is based on copolymers of lactic acid and glycolic acid (PLGA) and has been extensively used in experiments aimed at delivering antibiotics against Mycobacterium tuberculosis in animal models of tuberculosis. Here, we describe fabrication of PLGA NPs containing either a high concentration of rifampicin or detectable levels of the green fluorescent dye, coumarin-6. Our goal here was twofold: first to resolve the controversial issue of whether, after phagocytic uptake, PLGA NPs remain membrane-bound or whether they escape into the cytoplasm, as has been widely claimed. Second, we sought to make NPs that enclosed sufficient rifampicin to efficiently clear macrophages of infection with Mycobacterium bovis BCG. Using fluorescence microscopy and immuno-electron microscopy, in combination with markers for lysosomes, we show that BCG bacteria, as expected, localized to early phagosomes, but that at least 90% of PLGA particles were targeted to, and remained in, low pH, hydrolaserich phago-lysosomes. Our data collectively argue that PLGA NPs remain membrane-enclosed in macrophages for at least 13 days and degrade slowly. Importantly, provided that the NPs are fabricated with sufficient antibiotic, one dose given after infection is sufficient to efficiently clear the BCG infection after 9-12 days of treatment, as shown by estimates of the number of bacterial colonies in vitro.
Summary: Viscosity, asymmetric flow field‐flow fractionation (AFFFF) methods, and dynamic light scattering (DLS) experiments were used to characterize the effect of pH on the behavior of dilute and semidilute aqueous buffered solutions of hyaluronic acid (HA). It is shown that degradation of HA occurs at pH < 4 and pH > 11, and in the domain 4 < pH < 11 virtually no disruption of the HA chains occurs. The pH‐induced scission of HA is attributed to the cleavage of glycosidic bonds. In dilute solutions, intramolecular rupture of HA chains occurs and in the semidilute concentration regime network‐fragmentation is observed at low and high pH values. The degree of degradation of HA is most marked at high pH. From the molecular weight and radius of gyration obtained from AFFFF at different pH values, it is clear that the degradation of HA starts at early times after preparation of the solution, and continues for a couple of days. The kinetics of degradation of HA is fastest at high pH.
Intramolecular and intermolecular associations of dilute aqueous alkali solutions of hydroxyethylcellulose (HEC) in the presence of a chemical cross-linker agent (divinyl sulfone, DVS) are studied with the aid of dynamic light scattering (DLS) and rheological methods. At quiescent state, DLS detected only interchain aggregation of HEC during the cross-linker reaction, and the magnitude and start of this effect depend on the cross-linker concentration. The growth of clusters has been investigated at various stages in the course of the cross-linking process by quenching the reaction mixture to a lower pH. After quenching, no further association of the species occurred. When the dilute reaction mixtures are subjected to shear, intrapolymer cross-linking with contraction of the molecules is observed, and at moderate shear rates this effect is followed by interpolymer cross-linking and the formation of aggregates at longer times. The rate of the growth of the multichain aggregates decreases with increasing shear rate, and at sufficiently high shear rates no cross-linking effect is observed. Depending on the shear rate, the aggregates continue to grow until they reach a certain size where an incipient breakup of interaggregate chains can be observed. The delicate interplay between intramolecular and intermolecular association effects is governed by factors such as the magnitude of the shear rate, polymer concentration, and cross-linker density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.