The promise of bispecific antibodies (bsAbs) to yield more effective therapeutics is well recognized; however, the generation of bsAbs in a practical and cost-effective manner has been a formidable challenge. Here we present a technology for the efficient generation of bsAbs with normal IgG structures that is amenable to both antibody drug discovery and development. The process involves separate expression of two parental antibodies, each containing single matched point mutations in the CH3 domains. The parental antibodies are mixed and subjected to controlled reducing conditions in vitro that separate the antibodies into HL half-molecules and allow reassembly and reoxidation to form highly pure bsAbs. The technology is compatible with standard large-scale antibody manufacturing and ensures bsAbs with Fcmediated effector functions and in vivo stability typical of IgG1 antibodies. Proof-of-concept studies with HER2×CD3 (T-cell recruitment) and HER2×HER2 (dual epitope targeting) bsAbs demonstrate superior in vivo activity compared with parental antibody pairs.immunotherapy | pharmacokinetics | anti-tumor
The manufacturing of bispecific antibodies can be challenging for a variety of reasons. For example, protein expression problems, stability issues, or the use of non-standard approaches for manufacturing can result in poor yield or poor facility fit. In this paper, we demonstrate the use of standard antibody platforms for large-scale manufacturing of bispecific IgG1 by controlled Fab-arm exchange. Two parental antibodies that each contain a single matched point mutation in the CH3 region were separately expressed in Chinese hamster ovary cells and manufactured at 1000 L scale using a platform fed-batch and purification process that was designed for standard antibody production. The bispecific antibody was generated by mixing the two parental molecules under controlled reducing conditions, resulting in efficient Fab-arm exchange of >95% at kg scale. The reductant was removed via diafiltration, resulting in spontaneous reoxidation of interchain disulfide bonds. Aside from the bispecific nature of the molecule, extensive characterization demonstrated that the IgG1 structural integrity was maintained, including function and stability. These results demonstrate the suitability of this bispecific IgG1 format for commercial-scale manufacturing using standard antibody manufacturing techniques.
We present a novel benchtop-based microfabrication technology: 3D printing, ink casting, micromachined lamination (3D PICLμM) for rapid prototyping of lab-on-a-chip (LOC) and biological devices. The technology uses cost-effective, makerspace-type microfabrication processes, all of which are ideally suited for low resource settings, and utilizing a combination of these processes, we have demonstrated the following devices: (i) 2D microelectrode array (MEA) targeted at in vitro neural and cardiac electrophysiology, (ii) microneedle array targeted at drug delivery through a transdermal route and (iii) multi-layer microfluidic chip targeted at multiplexed assays for in vitro applications. The 3D printing process has been optimized for printing angle, temperature of the curing process and solvent polishing to address various biofunctional considerations of the three demonstrated devices. We have depicted that the 3D PICLμM process has the capability to fabricate 30 μm sized MEAs (average 1 kHz impedance of 140 kΩ with a double layer capacitance of 3 μF), robust and reliable microneedles having 30 μm radius of curvature and ~40 N mechanical fracture strength and microfluidic devices having 150 μm wide channels and 400 μm fluidic vias capable of fluid mixing and transmitted light microparticle visualization. We believe our 3D PICLμM is ideally suited for applications in areas such as electrophysiology, drug delivery, disease in a dish, organ on a chip, environmental monitoring, agricultural therapeutic delivery and genomic testing.
The development of microelectrode arrays (MEAs) along with complementary advances in electronics, mechanics and software to connect with these arrays has led to the in vitro interfacing and benchtop electrophysiological models of several electrically active cells such as neurons and cardiomyocytes proving vital models and testing of human disease conditions in a dish/on a chip. This topical review deals with the micro/nanofabrication technology development of Microelectrodes Arrays from early silicon based developments to today’s additive manufacturing technologies that have been employed to address bio-micro-electro-mechanical systems tool development in this space. Specifically 2D and 3D MEAs technologies have been reviewed in this paper along with a broad overview of some of the biological applications using these devices that are advancing the very state of biomedical research.
This article deals with input-to-state stability (ISS) of continuoustime switched nonlinear systems. Given a family of systems with exogenous inputs such that not all systems in the family are ISS, we characterize a new and general class of switching signals under which the resulting switched system is ISS. Our stabilizing switching signals allow the number of switches to grow faster than an affine function of the length of a time interval, unlike in the case of average dwell time switching. We also recast a subclass of average dwell time switching signals in our setting and establish analogs of two representative prior results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.