Increased Greenhouse Gas (GHG) emissions from both natural and man-made systems contribute to climate change. In addition to reducing the use of crude petroleum’s derived fuels, and increasing tree-planting efforts and sustainable practices, air pollution can be minimized through phytoremediation. Bio-fuel from crops grown on marginal land can sustainably address climate change, global warming, and geopolitical issues. There are numerous methods for producing renewable energy from both organic and inorganic environmental resources (sunlight, air, water, tides, waves, and convective energy), and numerous technologies for doing the same with biomass with different properties and derived from different sources (food industry, agriculture, forestry). However, the production of bio-fuels is challenging and contentious in many parts of the world since it competes for soil with the growth of crops and may be harmful to the environment. Therefore, it is necessary to use wildlife management techniques to provide sustainable bio-energy while maintaining or even improving essential ecosystem processes. The second generation of bio-fuels is viewed as a solution to the serious issue. Agricultural lignocellulosic waste is the primary source of second-generation bio-fuel, possibly the bio-fuel of the future. Sustainable practices to grow biomass, followed by their holistic conversion into ethanol with desired yield and productivity, are the key concerns for employing renewable energy mix successfully. In this paper, we analyze the various types of bio-fuels, their sources, and their production and impact on sustainability.
Aggrandize industrialization and urbanization have resulted in many issues, such as increased energy demand, a plethora of waste output, and negative environmental consequences. As a result, there is excessive exploitation and over-usage of fuels and finite resources, which is paving the path for the exhaustion of fuels. Extensive use of these fossil-derived fuels has caused serious threats to the environment in terms of greenhouse gases emission leading to breathing troubles and other associated health hazards. In order to mitigate the harmful effects of fossil-derived fuels, researchers are more focused towards the production and application of bio-based fuels like bioethanol, biodiesel, biohydrogen etc. These biofuels are produced from crops and edible/non-edible materials and emit much lower pollution compared to fossil-derived fuels. Even though biofuels are effective alternatives, high operational costs with low production volume are the major limitations of this process, which the available technologies cannot handle. With increasing application of nanoparticles as catalysts in several sectors due to its unique properties such as high catalytic activity, surface to volume ratio, mechanical properties, etc., its application in biofuels production has been explored recently. The present review focuses on the application of nanocatalysts in various stages of biofuel production, different types of nanocatalyst used in the innovative era and for biofuels production and their merits and demerits. The supply of biofuels, such as feedstock is large, and with improved processing, we may be able to significantly lower our reliance on fossil fuels. The present review discusses the current updates, future possibilities, and challenges of biofuels production to help make the country self-reliant in the field of green energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.