Mesenchymal stem cells (MSC) have been reported to be an attractive therapeutic cell source for the treatment of renal diseases. Recently, we reported that transplantation of allogenic fetal membrane-derived MSC (FM-MSC), which are available noninvasively in large amounts, had a therapeutic effect on a hindlimb ischemia model (Ishikane S, Ohnishi S, Yamahara K, Sada M, Harada K, Mishima K, Iwasaki K, Fujiwara M, Kitamura S, Nagaya N, Ikeda T. Stem Cells 26: 2625-2633, 2008). Here, we investigated whether allogenic FM-MSC administration could ameliorate renal injury in experimental glomerulonephritis. Lewis rats with anti-Thy1 nephritis intravenously received FM-MSC obtained from major histocompatibility complex-mismatched ACI rats (FM-MSC group) or a PBS (PBS group). Nephritic rats exhibited an increased urinary protein excretion in the PBS group, whereas the FM-MSC group rats had a significantly lower level of increase (P < 0.05 vs. PBS group). FM-MSC transplantation significantly reduced activated mesangial cell (MC) proliferation, glomerular monocyte/macrophage infiltration, mesangial matrix accumulation, as well as the glomerular expression of inflammatory or extracellular matrix-related genes including TNF-α, monocyte chemoattractant protein 1 (MCP-1), type I collagen, TGF-β, type 1 plasminogen activator inhibitor (PAI-1) (P < 0.05 vs. PBS group). In vitro, FM-MSC-derived conditioned medium significantly attenuated the expression of TNF-α and MCP-1 in rat MC through a prostaglandin E(2)-dependent mechanism. These data suggest that transplanted FM-MSC contributed to the healing process in injured kidney tissue by producing paracrine factors. Our results indicate that allogenic FM-MSC transplantation is a potent therapeutic strategy for the treatment of acute glomerulonephritis.
Pulmonary fibrosis is a progressive lung disorder characterized by interstitial fibrosis, for which no effective treatments are available. Chondroitin sulfate proteoglycan (CSPG) has been shown to be a mediator, but the specific component of glycosaminoglycan chains of CSPG has not been explored. We show that chondroitin sulfate E-type (CS-E) is involved in fibrogenesis. Small interfering RNA (siRNA) targeting carbohydrate sulfotransferase 15 (CHST15) was designed to inhibit CHST15 mRNA and its product, CS-E. CS-E augments cell contraction and CHST15 siRNA inhibits collagen production. We found that bleomycin treatment increased CHST15 expression in interstitial fibroblasts at day 14. CHST15 siRNA was injected intranasally on days 1, 4, 8, and 11, and CHST15 mRNA was significantly suppressed by day 14. CHST15 siRNA reduced lung CSPG and the grade of fibrosis. CHST15 siRNA repressed the activation of fibroblasts, as evidenced by suppressed expression of α smooth muscle actin (αSMA), connective tissue growth factor (CTGF), lysyl oxidase like 2 (LOXL2), and CC-chemokine ligand 2 (CCL2)/monocyte chemoattractant protein-1 (MCP-1). Inflammatory infiltrates in the bronchoalveolar lavage fluid (BALF) and interstitium were diminished by CHST15 siRNA. These results indicate a pivotal role for CHST15 in fibroblast-mediated lung fibrosis and suggest a possible new therapeutic role for CHST15 siRNA in pulmonary fibrosis.
BackgroundSystemic inflammation is present in chronic obstructive pulmonary disease (COPD). A whey peptide-based enteral diet reduce inflammation in patients with COPD, but its effect on COPD development has not been determined. On the other hand, it is known that short chain fatty acids (SCFAs), which are produced by micro-flora in the gut, attenuates bronchial asthma in mice model.MethodsMice with elastase-induced emphysema were fed with 1 of 3 diets (control diet, whey peptide-based enteral diet, or standard enteral diet) to determine the effects of whey peptide-based enteral diet on emphysema and on cecal SCFAs.ResultsThe whey peptide-based enteral diet group exhibited fewer emphysematous changes; significantly lower total cell counts in bronchoalveolar lavage fluid (BALF); and significantly higher cecal SCFA levels than either the control or standard enteral diet groups. The total cell count was inversely correlated with total cecal SCFA levels in these three diet groups.ConclusionsThe whey peptide-based enteral diet attenuates elastase-induced emphysema through the suppression of inflammation in the lung. This may be related to the increase in cecal SCFA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.