We have synthesized a new photochromic compound that exhibits unusual negative photochromism, in which the stable colored species photochemically converts into the metastable colorless species via a short-lived radical. This compound has a 1,1'-binaphthyl moiety bridging the two diphenylimidazole units. Its photochemical properties were investigated by nanosecond laser flash photolysis. The colored species isomerizes to the colorless species upon exposure to visible light and thermally returns to the original colored species within 20 min at room temperature. Moreover, the photodecoloration reaction proceeds via a short-lived radical with a half-life of 9.4 μs in benzene at room temperature. Both the colored and colorless species show the photoinduced homolytic bond cleavage reaction of the C-N bond between the nitrogen atom of the imidazole ring and the carbon atom of the 1-position of the 1,1'-binaphthyl moiety and that of the C-C bond between each of the carbon atoms of the 2-position of the imidazole ring, respectively, followed by their formation by rapid radical coupling.
The synthesis and photochromic behavior of the fast photochromic polymers carrying [2.2]paracyclophane-bridged imidazole dimer are demonstrated. A significant feature of this synthetic strategy is that we can modify the photochromic properties such as coloration/decoloration rate, coloring, and photosensitivity via the stepwise synthetic approach of the imidazole dimer system. Notably, the photochromic behavior of the polymers is not affected by the environment around the photochromes and copolymerization with other monomers in both solution and film, which cannot be realized in any other conventional photochromic systems. The comparable photochromic behavior of the homopolymers and copolymers in solution and film indicates that the photochromic unit is independent from the local environment, which allows effective molecular design of the photochromic monomer unit to accomplish desired photochromic properties of the polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.