We have synthesized a new photochromic compound that exhibits unusual negative photochromism, in which the stable colored species photochemically converts into the metastable colorless species via a short-lived radical. This compound has a 1,1'-binaphthyl moiety bridging the two diphenylimidazole units. Its photochemical properties were investigated by nanosecond laser flash photolysis. The colored species isomerizes to the colorless species upon exposure to visible light and thermally returns to the original colored species within 20 min at room temperature. Moreover, the photodecoloration reaction proceeds via a short-lived radical with a half-life of 9.4 μs in benzene at room temperature. Both the colored and colorless species show the photoinduced homolytic bond cleavage reaction of the C-N bond between the nitrogen atom of the imidazole ring and the carbon atom of the 1-position of the 1,1'-binaphthyl moiety and that of the C-C bond between each of the carbon atoms of the 2-position of the imidazole ring, respectively, followed by their formation by rapid radical coupling.
We report the synthesis and the photochromic behavior of a newly designed, photochromic, radical diffusion-inhibited hexaarylbiimidazole (HABI) derivative with markedly improved photochromic performance in coloration and decoloration rates as well as greater optical density in the colored state. The thermal bleaching rate (tau1/2 = 260 ms at 295 K) is the fastest among the reported ones for HABI derivatives.
The 2,5,8-tris(pentafluorophenyl)phenalenyl radical was obtained by a straightforward synthesis in 11 steps from 2,7-dibromonaphthalene. This radical crystallized as a σ dimer from a solution in MeCN and as a π-stack from a melted liquid. The π stack was not confined to dimerization, but extended into a uniform 1D stack with an interplanar distance of 3.503 Å. This unique duality in association mode arose from the thermodynamic stability of the phenalenyl moiety.
The termination mechanism of radical polymerization, that is, disproportionation (Disp) versus combination (Comb), determines the chain length and end-group structure of the resulting polymer as well as polymer properties, and yet factors governing the mechanism are still unclear. Furthermore, no attempts have been made to control the mechanism. Here, the effects of temperature and viscosity on the termination of methyl methacrylate (MMA) and styrene (St) polymerization were elucidated by using small molecular model-radicals and the corresponding polymer radicals in various solvents. The results showed that Disp was preferred over Comb if the temperature was decreased and the viscosity of the media was increased for all the radicals examined. Although the temperature effect on the Disp/Comb selectivity is counterintuitive because Disp should be favored entropically over Comb considering the decrease in the number of polymer chains in Comb, the results clearly showed that the observed inverse temperature effect was a result of the viscosity effect. Disp was favored over Comb at lower temperatures and in more viscous solvents because the transition state leading to Disp is more flexible than that for Comb. Because of the significant viscosity effect, Disp selectively occurred in highly viscous solvents; the Disp/Comb selectivity was 97/3 in both MMA and St termination. For the first time, the termination mechanism was intentionally controlled and such a high Disp selectivity was observed. In particular, the termination mechanism in St is described as Comb in textbooks, but nearly complete inversion of the selectivity from Comb to Disp is realized by simply changing the viscosity of the media.
We demonstrate that photochromism based on light-driven reversible C−N single bond cleavage can enable rapid coloration upon UV light irradiation and successive fast thermal back-reaction within tens of microseconds at room temperature. According to Marcus theory, the thermal back-reaction would be accelerated with increasing ΔG
0, which is closely linked to the decrease in ΔG
‡. We have considered that the ΔG
0 of the thermal back-reaction could be enlarged by destabilizing the colored species and designed pseudogem-DPI-PI[2.2]PC, with a [2.2]paracyclophane moiety that couples diphenylimidazole and phenanthroimidazole groups. The present study demonstrates that controlling the stability of the biradical state is effective in accelerating the thermal back-reaction for the photochromic [2.2]paracyclophane-bridged imidazole dimer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.