Although the precise role of oligosaccharides in metastasis is presently unknown, numerous studies suggest that the 1-6 branching structure of N-linked oligosaccharides plays a role in tumor metastasis. N-Acetylglucosaminyltransferase V (GnT-V), which catalyzes the formation of the 1-6 branch, therefore appears to play a crucial role in tumor metastasis. Recently, we demonstrated that the expression of the GnT-V gene is regulated by a transcriptional factor, Ets-1 (Kang, R., Saito, H., Ihara, Y., Miyoshi, E., Koyama, N., Sheng, Y., and Taniguchi, N. (1996) J. Biol. Chem. 271, 26706 -26712). In this study, we report an investigation of the general requirement for Ets-1 in the expression of GnT-V in cancer cell lines. In 16 cancer cell lines, the levels of GnT-V mRNA were closely correlated with ets-1 expression (r ؍ 0.97; p < 0.0001). An increase in ets-1 levels by transfection of its cDNA led to an enhancement in GnT-V expression in cells that normally expressed low levels of ets-1. In contrast, the transfection of dominant negative ets-1 into cells that express high levels of ets-1 resulted in a decrease in GnT-V expression. Although Ets-1 cooperates with c-Jun in certain gene expressions, this was not the case in the regulation of the GnT-V gene. These results suggest that Ets-1 plays a significant role in regulating the expression of GnT-V in a variety of cancers and might be involved in the potential for malignancy via the action of GnT-V.The glycosylation of cell surface glycoproteins is thought to play a critical role in a variety of specific biological interactions (1). Numerous studies have concluded that alterations of cell surface glycoprotein oligosaccharides cause significant changes in the adhesive or migratory behavior of a cell (2). The high degree of branching of N-glycans, in particular, the 1-6 branching type, appears to be related to a potential for the development of malignancy (3). UDP-GlcNAc, ␣-mannoside -1,6-N-acetylglucosaminyltransferase V (GnT-V), 1 represents an enzyme that catalyzes such branching. To understand the molecular basis of this oligosaccharide structure in terms of tumor metastasis, we and other groups have purified GnT-V from rat kidney (4) and from a human lung cancer cell line QG (5) and cloned the gene. The expression of GnT-V is enhanced by malignant transformation through the ras oncogene (6), by cell proliferation (7), and by hepatocarcinogenesis (8). However, GnT-V is also highly expressed in normal tissues, suggesting that the synthesis of oligosaccharides by GnT-V might be different in normal cells versus cancer cells (9). The most important issue, however, is how GnT-V modifies the metastatic potential of tumor cells.When the GnT-V gene was transfected into a lung epithelioid cell, the transfectant showed an increased tumorigenicity, as evidenced by an assay involving the subcutaneous injection of the cells into nude mice (10). Interestingly, this cell showed an altered transformed cell morphology, as is often observed for oncogenically transformed cells. ...
alpha1,6-Fucosyltransferase (Fut8) catalyzes the transfer of a fucose residue from GDP-fucose to the innermost N-acetylglucosamine residue of N-glycans. Here we report that the loss of core fucosylation impairs the function of low-density lipoprotein (LDL) receptor-related protein-1 (LRP-1), a multifunctional scavenger and signaling receptor, resulting in a reduction in the endocytosis of insulin like growth factor (IGF)-binding protein-3 (IGFBP-3) in the cells derived from Fut8-null (Fut8-/-) mice. The reduced endocytosis was restored by the re-introduction of Fut8. Serum levels of IGFBP-3 were markedly upregulated in Fut8-/- mice. These data clearly indicate that core fucosylation is crucial for the scavenging activity of LRP-1 in vivo.
The transfection of glycoprotein glycosyltransferase genes into cells leads to modification of both the structure and function of the glycoproteins and as a result, changes in glycome patterns. N-glycan branching enzymes hold some promise as a model system for the identification of glycome patterns. Both N-acetylglucosaminyltransferase III and alpha 1-6 fucosyltransferase are typical glycosyltransferases, which are involved in the branching of N-glycans. The resulting enzymatic products, bisecting N-GlcNAc and alpha 1-6 fucose residues, are no longer modified by other glycosyltransferases and it is a relatively simple task to identify their modification by means of lectins. In this review, the glycome patterns of glycosyltransferase gene transfectants and the non-transfectants were compared by two-dimensional gel electrophoresis and lectin staining, and the biological significance of the two genes are described. Analyses of glycome patterns by transfecting glycosyltransferase genes will lead to new fields of study in the area of postgenome research.
The alpha1,6 fucosyltransferase (alpha1,6 FucT) catalyzes the transfer of a fucose from GDP-fucose to the innermost GlcNAc residue of N-linked glycans via an alpha1,6 linkage. alpha1,6 FucT was overexpressed in transgenic mice under the control of a combined cytomegalovirus and chicken beta-actin promoter. Histologically numerous small vacuoles, in which lipid droplets had accumulated, were observed in hepatocytes and proximal renal tubular cells. Electron microscopic studies showed that the lipid droplets were membrane-bound and apparently localized within the lysosomes. Cholesterol esters and triglycerides were significantly increased in liver and kidney of the transgenic mice. Liver lysosomal acid lipase (LAL) activity was significantly lower in the transgenic mice compared to the wild mice, whereas LAL protein level, which was detected immunochemically, was increased, indicating that the specific activity of LAL was much lower in the transgenic mice. In all of the transgenic and nontransgenic mice examined, the activity of liver LAL was negatively correlated with the level of alpha1,6 FucT activity. As evidenced by lectin and immunoblot analysis, LAL was found to be more fucosylated in the transgenic mice, suggesting that the aberrant fucosylation of LAL causes an accumulation of inactive LAL in the lysosomes. Such an accumulation of inactive LAL could be a likely cause for a steatosis in the lysosomes of the liver and kidney in the case of the alpha1,6 FucT transgenic mice.
A glycomic approach to the identification of target molecules in glycosyltransferase gene targeting mice is a promising strategy to understand the biological significance of glycosyltransferase genes in vivo. In order to understand the biological effects of N-acetylglucosaminyltransferase III (GnT-III) on tumor formation in the liver, diethylnitrosamine (DEN) induced tumor formation in the GnT-III transgenic mice was examined. Our findings show that the incidence of hepatic tumor could be dramatically suppressed. A glycomic approach using two-dimensional gel electrophoresis followed by lectin blot analysis and sequence analysis revealed that haptoglobin, a radical scavenger molecule in serum was heavily glycosylated in hepatic tumor-bearing GnT-III transgenic mice that had been treated with DEN. Immunoprecipitation followed by E4-PHA lectin blot analysis also confirmed that the bisecting GlcNAc, a product of GnT-III was added to haptoglobin molecules. Since the use of DEN is known to lead to the production of lipid peroxidation products which facilitate this reaction and haptoglobin is an acute phase reactant, acting as a radical scavenger against hemoglobin or iron stimulated lipid peroxidation, a relationship between the glycosylation of haptoglobin and the suppression of hepatoma development can not be ruled out. This paper is the first report that shows a relationship between the sugar chains of glycoproteins with radical scavenger activity and hepatocarcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.