The power conversion efficiency (PCE) of organic photovoltaic (OPV) modules with 9.5% (25 cm2) and 8.7% (802 cm2) have been demonstrated. This PCE of the module exceeded our previous world records of 8.5% (25 cm2) and 6.8% (396 cm2) that were listed in the latest Solar Cell Efficiency Tables ver.43 [1]. Both module design and coating/patterning technique were consistently studied for module development. In order to achieve highly efficient modules, we increased the ratio of photo-active area to designated illumination area to 94% without any scribing process and placed insulating layers in order to decrease the leakage current. The meniscus coating method was used for the fabrication of both buffer and photoactive layers. This technique ensures the fabrication of uniform and nanometer order thickness layers with thickness variation less than 3%. Furthermore, the PCE of the OPV under indoor illumination was found to be higher than that of the conventional Si type solar cells. This indicates that OPVs are promising as electrical power supplies for indoor applications. Therefore, we have also developed several prototypes for electronics integrated photovoltaics (EIPV) such as electrical shelf labels and wireless sensors embedded with our OPV modules, which can be operated by indoor lights.
The authors have found a write once read many (WORM) type new optical recording medium of an Ni–NiO heterogeneous system thin film. The structure of the recording medium is a single layer Ni–NiO heterogeneous thin film on a transparent resin substrate. Irradiation of a converged laser diode beam causes a volume expansion of the film to form a swell. Information reading is done by using its reduction in reflectivity. The recordable composition region of this film is considered to be the transitive region from the metal to the oxide. The volume expansion is assumed to be induced by the oxidation of the Ni–NiO heterogeneous thin film and the height of the swell is estimated. This value agrees well with the measured top height of the swell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.