Gata3 mutant mice expire of noradrenergic deficiency by embryonic day (E) 11 and can be rescued pharmacologically or, as shown here, by restoring Gata3 function specifically in sympathoadrenal (SA) lineages using the human DBH promoter to direct Gata3 transgenic expression. In Gata3-null embryos, there was significant impairment of SA differentiation and increased apoptosis in adrenal chromaffin cells and sympathetic neurons. Additionally, mRNA analyses of purified chromaffin cells from Gata3 mutants show that levels of Mash1, Hand2 and Phox2b (postulated upstream regulators of Gata3) as well as terminally differentiated SA lineage products (tyrosine hydroxylase, Th, and dopamine -hydroxylase, Dbh) are markedly altered. However, SA lineage-specific restoration of Gata3 function in the Gata3 mutant background rescues the expression phenotypes of the downstream, as well as the putative upstream genes. These data not only underscore the hypothesis that Gata3 is essential for the differentiation and survival of SA cells, but also suggest that their differentiation is controlled by mutually reinforcing feedback transcriptional interactions between Gata3, Mash1, Hand2 and Phox2b in the SA lineage.
Rationale: Airway remodeling is an important feature of chronic asthma that causes irreversible airflow obstruction. Although asthma is considered to be a Th2 disease, the role of T-bet and GATA-3, the key transcription factors for differentiation toward Th1 and Th2 cells, in the pathogenesis of airway remodeling is poorly understood. Objectives: We therefore examined the effects of GATA-3 or T-bet induction of Th1/Th2 bias on the development of airway remodeling in mice. Methods: The development of airway remodeling after repeated allergen challenges was analyzed using transgenic mice overexpressing either GATA-3 or T-bet. Main Results: The degrees of subepithelial fibrosis and airway smooth muscle hyperplasia after repeated allergen exposure were significantly enhanced in mice overexpressing GATA-3, compared with wild-type mice. Allergen-induced goblet cell hyperplasia and mucus hypersecretion were significantly lower in mice overexpressing T-bet than in wild-type mice. Eosinophilic airway inflammation increased in mice overexpressing GATA-3, but decreased in mice overexpressing T-bet after repeated allergen exposure. Cytokine analysis revealed that the Th1/Th2 cytokine balance shifted to Th2 in lung homogenates and lung T cells of mice overexpressing GATA-3, whereas this balance shifted to Th1 in those of mice overexpressing T-bet after allergen exposure. Lung transforming growth factor- and eotaxin levels were associated with the degree of subepithelial fibrosis and eosinophilic airway inflammation, respectively. Conclusions: Overall, the results indicate that development of airway remodeling is regulated by the lung Th1/Th2 bias induced by GATA-3 and T-bet.
Epilepsy is a common brain disorder throughout history. Epilepsy-related ligand–receptor complex, LGI1–ADAM22, regulates synaptic transmission and has emerged as a determinant of brain excitability, as their mutations and acquired LGI1 autoantibodies cause epileptic disorders in human. Here, we report the crystal structure of human LGI1–ADAM22 complex, revealing a 2:2 heterotetrameric assembly. The hydrophobic pocket of the C-terminal epitempin-repeat (EPTP) domain of LGI1 binds to the metalloprotease-like domain of ADAM22. The N-terminal leucine-rich repeat and EPTP domains of LGI1 mediate the intermolecular LGI1–LGI1 interaction. A pathogenic R474Q mutation of LGI1, which does not exceptionally affect either the secretion or the ADAM22 binding, is located in the LGI1–LGI1 interface and disrupts the higher-order assembly of the LGI1–ADAM22 complex in vitro and in a mouse model for familial epilepsy. These studies support the notion that the LGI1–ADAM22 complex functions as the trans-synaptic machinery for precise synaptic transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.